Advertisement

c# opencv 轮廓检测_opencv轮廓findContours&drawContours

阅读量:

本文目的

目的:学习使用opencv的findContours和drawContours函数

语言:java

版本:opencv-410

简介:通过findContours函数检测物体轮廓,并且用drawContours画出来

程序支持效果:

加载图片后可以在界面上更改三个参数进行效果对比查看

· 1.修改边缘检测阈值,改变边缘检测效果

· 2.修改轮廓检索模式

· 3.修改轮廓的近似模式

分解介绍

函数:findContours

复制代码
    findContours(Mat image,List contours,Mat hierarchy,int mode,int method,Point offset)
    

参数介绍

· 第一个参数:image:单通道图像矩阵,可以是灰度图,但更常用的是二值图像,一般是经过Canny、拉普拉斯等边缘检测算子处理过的二值图像;

· 第二个参数:contours,定义为"vector> contours",是一个向量,并且是一个双重向量,向量内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓。有多少轮廓,向量contours就有多少元素。

· 第三个参数:存储了检出的轮廓层级结构,具体学习参考别人的文档:

· 第四个参数:int型的mode,定义轮廓的检索模式:

· RETR_EXTERNAL :只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略

· RETR_LIST :检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓

· RETR_CCOMP : 检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层

· RETR_TREE :检测所有轮廓,所有轮廓建立一个等级树结构。外层轮廓包含内层轮廓,内层轮廓还可以继续包含内嵌轮廓。

· 第五个参数:int型的method,定义轮廓的近似方法:

· CHAIN_APPROX_NONE :保存物体边界上所有连续的轮廓点到contours向量内

· CHAIN_APPROX_SIMPLE :仅保存轮廓的拐点信息,把所有轮廓拐点处的点保存入contours向量内,拐点与拐点之间直线段上的信息点不予保留

· CHAIN_APPROX_TC89_L1CHAIN_APPROX_TC89_KCOS 使用teh-Chinl chain 近似算法

· 第六个参数:Point偏移量,所有的轮廓信息相对于原始图像对应点的偏移量,相当于在每一个检测出的轮廓点上加上该偏移量,并且Point还可以是负值!

函数:drawContours

复制代码
    drawContours(Mat image,List contours,int contourIdx,Scalar color,int thickness,int lineType,Mat hierarchy,int maxLevel,Point offset)
    

参数介绍

· 第一个参数image表示目标图像,

· 第二个参数contours表示输入的轮廓组,每一组轮廓由点vector构成,

· 第三个参数contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓,

· 第四个参数color为轮廓的颜色,

· 第五个参数thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部,

· 第六个参数lineType为线型,

· 第七个参数为轮廓结构信息,

· 第八个参数为maxLevel

· 第九个参数为偏移量

程序步骤

以下是程序的核心步骤:

· 加载本地图片

复制代码
    String filename = FileLoadUtils.getFilePath("static/ppp3.jpg");Mat src = Imgcodecs.imread(filename);
    

· 灰度变换

复制代码
    //灰度变换Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
    

· 滤波处理

复制代码
    //滤波处理Imgproc.blur(srcGray, srcGray, new Size(3, 3));
    

· 边缘检测

复制代码
    Mat cannyOutput = new Mat();Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);
    

· 轮廓检测

复制代码
    Imgproc.findContours(cannyOutput, contours, hierarchy, retrModel, chainApproxModel);
    

· 轮廓检测结果的绘画

复制代码
    Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);for (int i = 0; i < contours.size(); i++) {Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));Imgproc.drawContours(drawing, contours, i, color, 1, Imgproc.LINE_8, hierarchy, 0, new Point());}
    

代码

复制代码
    package com.joe.vision.machine.vision.samples;import org.opencv.core.Point;import org.opencv.core.*;import org.opencv.highgui.HighGui;import org.opencv.imgcodecs.Imgcodecs;import org.opencv.imgproc.Imgproc;import javax.swing.*;import javax.swing.event.ChangeEvent;import javax.swing.event.ChangeListener;import java.awt.*;import java.awt.event.ActionEvent;import java.awt.event.ActionListener;import java.io.FileNotFoundException;import java.util.ArrayList;import java.util.HashMap;import java.util.List;import java.util.Random;class FindContours {private static final int MAX_THRESHOLD = 255;private Mat srcGray = new Mat();private JFrame frame;private JLabel imgSrcLabel;private JLabel imgContoursLabel;private int threshold = 100;private Random rng = new Random(12345);private static HashMap retrModelMap = new HashMap();private int retrModel = Imgproc.RETR_TREE;static {retrModelMap.put("RETR_EXTERNAL",Imgproc.RETR_EXTERNAL);retrModelMap.put("RETR_TREE",Imgproc.RETR_TREE);retrModelMap.put("RETR_LIST",Imgproc.RETR_LIST);retrModelMap.put("RETR_CCOMP",Imgproc.RETR_CCOMP);retrModelMap.put("RETR_FLOODFILL",Imgproc.RETR_FLOODFILL);}private static HashMap chainApproxMap = new HashMap();static {chainApproxMap.put("CHAIN_APPROX_NONE",Imgproc.CHAIN_APPROX_NONE);chainApproxMap.put("CHAIN_APPROX_SIMPLE",Imgproc.CHAIN_APPROX_SIMPLE);chainApproxMap.put("CHAIN_APPROX_TC89_L1",Imgproc.CHAIN_APPROX_TC89_L1);chainApproxMap.put("CHAIN_APPROX_TC89_KCOS",Imgproc.CHAIN_APPROX_TC89_KCOS);}private int chainApproxModel = Imgproc.CHAIN_APPROX_SIMPLE;public FindContours(String[] args) throws FileNotFoundException {String filename = FileLoadUtils.getFilePath("static/ppp3.jpg");Mat src = Imgcodecs.imread(filename);Imgproc.resize(src,src,new Size(src.width(),src.height()));if (src.empty()) {System.err.println("Cannot read image: " + filename);System.exit(0);}//灰度变换Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);//滤波处理Imgproc.blur(srcGray, srcGray, new Size(3, 3));// Create and set up the window.frame = new JFrame("Finding contours in your image demo");frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);// Set up the content pane.Image img = HighGui.toBufferedImage(src);addComponentsToPane(frame.getContentPane(), img);// Use the content pane's default BorderLayout. No need for// setLayout(new BorderLayout());// Display the window.frame.pack();frame.setVisible(true);update();}public static void main(String[] args) {// Load the native OpenCV librarySystem.loadLibrary(Core.NATIVE_LIBRARY_NAME);// Schedule a job for the event dispatch thread:// creating and showing this application's GUI.javax.swing.SwingUtilities.invokeLater(new Runnable() {@Overridepublic void run() {try {new FindContours(args);} catch (FileNotFoundException e) {e.printStackTrace();}}});}private void addComponentsToPane(Container pane, Image img) {if (!(pane.getLayout() instanceof BorderLayout)) {pane.add(new JLabel("Container doesn't use BorderLayout!"));return;}JPanel sliderPanel = new JPanel();sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));sliderPanel.add(new JLabel("Canny threshold: "));//构建滑动工具条JSlider slider = buildSlider();//构建检索模式下拉框JComboBox retrModelBox = buildRetrModelBox();//构建链近似值模式下拉框JComboBox chainApproxModelBox = buildChainApproxModelBox();sliderPanel.add(slider);sliderPanel.add(new JLabel("轮廓检索模式"));sliderPanel.add(retrModelBox);sliderPanel.add(new JLabel("链近似值模式"));sliderPanel.add(chainApproxModelBox);pane.add(sliderPanel, BorderLayout.PAGE_START);JPanel imgPanel = new JPanel();imgSrcLabel = new JLabel(new ImageIcon(img));imgPanel.add(imgSrcLabel);Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);imgContoursLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));imgPanel.add(imgContoursLabel);pane.add(imgPanel, BorderLayout.CENTER);}private JComboBox buildRetrModelBox() {JComboBox retrModelBox = new JComboBox(retrModelMap.keySet().toArray());retrModelBox.addActionListener(new ActionListener() {@Overridepublic void actionPerformed(ActionEvent e) {JComboBox cb = (JComboBox) e.getSource();retrModel = retrModelMap.get(cb.getSelectedItem());update();}});return retrModelBox;}private JComboBox buildChainApproxModelBox() {JComboBox retrModelBox = new JComboBox(chainApproxMap.keySet().toArray());retrModelBox.addActionListener(new ActionListener() {@Overridepublic void actionPerformed(ActionEvent e) {JComboBox cb = (JComboBox) e.getSource();chainApproxModel = chainApproxMap.get(cb.getSelectedItem());update();}});return retrModelBox;}private JSlider buildSlider() {JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);slider.setMajorTickSpacing(20);slider.setMinorTickSpacing(10);slider.setPaintTicks(true);slider.setPaintLabels(true);slider.addChangeListener(new ChangeListener() {@Overridepublic void stateChanged(ChangeEvent e) {JSlider source = (JSlider) e.getSource();threshold = source.getValue();update();}});return slider;}private void update() {Mat cannyOutput = new Mat();Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);List contours = new ArrayList<>();Mat hierarchy = new Mat();Imgproc.findContours(cannyOutput, contours, hierarchy, retrModel, chainApproxModel);Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);for (int i = 0; i < contours.size(); i++) {Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));Imgproc.drawContours(drawing, contours, i, color, 1, Imgproc.LINE_8, hierarchy, 0, new Point());}imgContoursLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(drawing)));frame.repaint();}}
    

效果

效果1

轮廓检索模式为RETR_EXTERNEL,只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略
ee3ea95ed22500152c1a8a987bcdce02.png

效果2

轮廓检索模式为RETR_TREE,检索出所有的轮廓
f246ea7f0169da96be77fec1c9103372.png

其他效果操作程序可以看到有所不同

全部评论 (0)

还没有任何评论哟~