Advertisement

ECCV 2020 语义分割论文大盘点(38篇论文)

阅读量:

作者:CV Daily | 编辑:Amusi
Date:2020-09-25
来源:计算机视觉Daily微信公众号(系投稿)
原文:ECCV 2020 语义分割论文大盘点(38篇论文)

前言

距离ECCV 2020 会议结束有段时间了,但其中的论文大多是目前的SOTA,所以非常值得大家花时间阅读学习!

计算机视觉Daily将正式系列整理 ECCV 2020的大盘点工作,本文为第二篇:语义分割方向。第一篇是目标检测系列,详见:ECCV 2020 目标检测论文大盘点(49篇论文)

本文主要包含:一般的2D语义分割、弱监督、域自适应语义分割等方向。论文PDF已打包好,在公众号后台回复:ECCV2020语义分割,即可下载这38篇论文。
在这里插入图片描述

  • 注意1:并不包含实例分割、全景分割、3D 语义分割、视频目标分割,因为这些方向的论文也是超级多的,后续计算机视觉Daily会专门系统整理,还请关注后续内容。
  • 注意2:中科院和商汤各有6篇,北京大学有5篇,国科大和香港中文大学各有4篇,微软和华中科技大学有3篇入围,太强了!
  • 注意3:弱监督和域自适应语义分割的论文越来越多,渐渐一片红海

文章目录

  • 前言

  • 语义分割

    • 弱监督语义分割
    • 域自适应语义分割
    • Few-Shot 语义分割
    • 语义分割对抗攻击
    • RGB-D 语义分割
    • 其他
  • 论文PDF下载

语义分割

Object-Contextual Representations for Semantic Segmentation

Intra-class Feature Variation Distillation for Semantic Segmentation

Class-wise Dynamic Graph Convolution for Semantic Segmentation

Tensor Low-Rank Reconstruction for Semantic Segmentation

Improving Semantic Segmentation via Decoupled Body and Edge Supervision

Learning to Predict Context-adaptive Convolution for Semantic Segmentation

EfficientFCN: Holistically-guided Decoding for Semantic Segmentation

SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentation for Accurate Freespace Detection

Semantic Flow for Fast and Accurate Scene Parsing

弱监督语义分割

Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation

Semi-supervised Semantic Segmentation via Strong-weak Dual-branch Network

Negative Pseudo Labeling using Class Proportion for Semantic Segmentation in Pathology

Employing Multi-Estimations for Weakly-Supervised Semantic Segmentation

Splitting vs. Merging: Mining Object Regions with Discrepancy and Intersection Loss for Weakly Supervised Semantic Segmentation

Weakly Supervised Semantic Segmentation with Boundary Exploration

Regularized Loss for Weakly Supervised Single Class Semantic Segmentation

Naive-Student: Leveraging Semi-Supervised Learning in Video Sequences for Urban Scene Segmentation

Semi-Supervised Segmentation based on Error-Correcting Supervision

域自适应语义分割

Unsupervised Domain Adaptation for Semantic Segmentation of NIR Images through Generative Latent Search

Domain Adaptive Semantic Segmentation Using Weak Labels

Content-Consistent Matching for Domain Adaptive Semantic Segmentation

Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation

Contextual-Relation Consistent Domain Adaptation for Semantic Segmentation

Learning from Scale-Invariant Examples for Domain Adaptation in Semantic Segmentation

Label-Driven Reconstruction for Domain Adaptation in Semantic Segmentation

作者单位:德克萨斯大学阿灵顿分校

论文:https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/5818_ECCV_2020_paper.php

代码:暂无

中文解读:暂无

Few-Shot 语义分割

Prototype Mixture Models for Few-shot Semantic Segmentation

Part-aware Prototype Network for Few-shot Semantic Segmentation

Few-Shot Semantic Segmentation with Democratic Attention Networks

作者单位:北航, 阿里巴巴优酷, IIAI等

论文:https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/2042_ECCV_2020_paper.php

代码:暂无

中文解读:暂无

语义分割对抗攻击

Indirect Local Attacks for Context-aware Semantic Segmentation Networks

Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation

RGB-D 语义分割

Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation

作者单位:北京大学, 商汤科技, 香港中文大学

论文:https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/1399_ECCV_2020_paper.php

代码:https://github.com/charlesCXK/RGBD_Semantic_Segmentation_PyTorch

中文解读:暂无

其他

Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation

GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation in the Wild

作者单位:帕多瓦大学

论文:https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/598_ECCV_2020_paper.php

代码:https://github.com/LTTM/GMNet

中文解读:暂无

Increasing the Robustness of Semantic Segmentation Models with Painting-by-Numbers

作者单位:罗伯特·博世公司, 海德堡大学

论文:https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/1097_ECCV_2020_paper.php

代码:暂无

中文解读:暂无

SideInfNet: A Deep Neural Network for Semi-Automatic Semantic Segmentation with Side Information

作者单位:新加坡科技设计大学, 迪肯大学, 香港科技大学

论文:https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/4524_ECCV_2020_paper.php

代码:暂无

中文解读:暂无

Attend and Segment: Attention Guided Active Semantic Segmentation

SegFix: Model-Agnostic Boundary Refinement for Segmentation

Efficient Semantic Video Segmentation with Per-frame Inference

论文PDF下载

上述38篇论文的PDF已全部打包好,在计算机视觉Daily公众号后台回复:ECCV2020语义分割,即可下载访问

欢迎关注计算机视觉Daily
在这里插入图片描述

全部评论 (0)

还没有任何评论哟~