图像领域的经典文献汇总
发布时间
阅读量:
阅读量
1. 图像分类(Classification)
- AlexNet网络(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- ZFNet(Visualizing and Understanding Convolutional Networks)(http://arxiv.org/abs/1311.2901)
- VGG网络(http://arxiv.org/abs/1409.1556)
- GoogLeNet和Inceptionv1(Going deeper with convolutions)(http://arxiv.org/abs/1409.4842)
- 批归一化(Batch Normalization)(http://arxiv.org/abs/1502.03167)
- Inceptionv3(Retrying the Inception Architecture for Computer Vision)(http://arxiv.org/abs/1512.00567)
- Inceptionv4和Inception-ResNet(http://arxiv.org/abs/1602.07261)
- Xception:基于深度可分离卷积的深度学习(Deep Learning with Depthwise Separable Convolutions)(http://arxiv.org/abs/1610.02357)
- ResNet网络(http://arxiv.org/abs/1512.03385)
- ResNeXt网络(http://arxiv.org/abs/1611.05431)
- 稠密网:密集连接网络(DenseNet)(http://arxiv.org/abs/1608.06993)
- NASNet-A:可扩展图像识别的学习可转移架构(Learning Transferable Architectures for Scalable Image Recognition) ( http : // arXiv . org / abs / 7 ? 7 ? ? ? https://arxiv.org-abs-?p=?
等
目标检测(Object Detection)
- R-CNN https://arxiv.org/abs/1311.2524
- Fast R-CNN https://arxiv.org/abs/1504.08083
- Faster R-CNN https://arxiv.org/abs/1506.01497
- Mask R-CNN https://arxiv.org/abs/1703.06870
- SSD https://arxiv.org/abs/1512.02325
- FPN(Feature Pyramid Networks for Object Detection) https://arxiv.org/abs/1612.03144
- RetinaNet(Focal Loss for Dense Object Detection) https://arxiv.org/abs/1708.02002
- Bag of Freebies for Training Object Detection Neural Networks https://arxiv.org/abs/1902.04103
- YOLOv1 https://arxiv.org/abs/1506.02640
- YOLOv2 https://arxiv.org/abs/1612.08242
- YOLOv3 https://arxiv.org/abs/1804.02767
- YOLOv4 https://arxiv.org/abs/2004.10934
- PP-YOLO https://arxiv.org/abs/2007.12099
- PP-YOLOv2 https://arxiv.org/abs/2104.10419
目标分割(Segmentation)
- Fully Convolutional Network (FCN) https://arxiv.org/abs/1411.4038
- U-Net (U-Net: Convolutional Networks for Biomedical Image Segmentation) https://arxiv.org/abs/1505.04597
- DeepLabv1 (Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs) https://arxiv.org/abs/1412.7062
- DeepLabv2 (Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs) https://arxiv.org/abs/1606.00915
- DeepLabv3 (Rethinking Atrous Convolution for Semantic Image Segmentation) https://arxiv.org/abs/1706.05587
- DeepLabv3+ (Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation) https://arxiv.org/abs/1802.02611
自然语言处理
- Attention Is All You Need https://arxiv.org/abs/1706.03762
Others
- Microsoft Research's COCO: Contextual Common Objects https://arxiv.org/abs/1405.0312
- The Pascal Visual Object Class Challenge: A Retrospectives http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham15.pdf
全部评论 (0)
还没有任何评论哟~
