自动驾驶motion相关任务
自动驾驶motion相关任务
-
轨迹预测
-
- paper list
-
- VectorNet
- MultiPath
- MultiPath++
-
规划
-
预测和规划一体
-
场景/交通流仿真与泛化
-
- waymo
- waabi Traffic Modelling
轨迹预测
任务定义: 给定场景(地图信息)和前1s物体的运动轨迹,预测这些物体的未来的轨迹(可能输出几条轨迹)
paper list
VectorNet
VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation
https://arxiv.org/abs/2005.04259
MultiPath
MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction
https://arxiv.org/abs/1910.05449
MultiPath++
MultiPath++: Efficient Information Fusion and Trajectory Aggregation for Behavior Prediction
https://arxiv.org/abs/2111.14973
规划
预测和规划一体
game former
场景/交通流仿真与泛化
Guided Conditional Diffusion for Controllable Traffic Simulation
提出了一种基于扩散模型的可控交通仿真方法。
MotionDiffuser: Controllable Multi-Agent Motion Prediction Using Diffusion
TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors
SceneGen: Learning to Generate Realistic Traffic Scenes
何生成现实交通场景,与扩散模型有相似的目标
TrafficBots: Towards World Models for Autonomous Driving Simulation and Motion Prediction
自动驾驶模拟和运动预测的世界模型
waymo
https://waymo.com/research/?ncr=
SceneDiffuser: Efficient and Controllable Driving Simulation Initialization and Rollout
Improving Agent Behaviors with RL Fine-tuning for Autonomous Driving
UniGen: Unified Modeling of Initial Agent States and Trajectories for Generating Autonomous Driving Scenarios
MotionDiffuser: Controllable Multi-Agent Motion Prediction using Diffusion
waabi Traffic Modelling
Learning to Drive via Asymmetric Self-Play
SceneControl: Diffusion for Controllable Traffic Scene Generation
Learning Realistic Traffic Agents in Closed-loop
MixSim: A Hierarchical Framework for Mixed Reality Traffic Simulation link
Rethinking Closed-loop Training for Autonomous Vehicles
Towards Scalable Coverage-Based Testing of Autonomous Vehicles
[3]:
[4]: https://zhuanlan.zhihu.com/p/707223043
