Advertisement

Python采集猫咪数据并做数据可视化图

阅读量:

前言 😋

大家早好、午好、晚好吖~

猫咪这种生物,你经常在广大平台上刷到,在同事、朋友那里看到~

这么可爱得东西,一下就激起了你的rua毛冲动,甚至还想自己养一只

那么今天我们就来采集一下猫咪数据并做个数据可视化~~

GOGOGO!!!出发~

环境介绍:

python 3.6

pycharm

模块

采集部分使用模块:

csv

requests >>> pip install requests

parsel

数据可视化使用模块:

pyecharts

pandas

如果安装python第三方模块:

通过 win + R 组合键打开命令行界面后输入 cmd 并回车, 依次执行安装命令 pip install 模块名(或直接使用 pip install requests)并按回车键

在pycharm中点击Terminal(终端) 输入安装命令

+通过Python官方提供的安装包下载链接可获得相应的安装教学视频。

+PyCharm社区版及专业版如何获取激活码?寻求帮助或加入学习社群即可获取激活码。

V : Python10010完全免费领取!

本次的案例流程思路:

一. 网站数据来源查询:
二. 代码实现步骤

采集代码

导入模块

复制代码
    import requests  # 第三方模块 需要 pip install requests 发送请求
    import parsel # 解析模块 pip install parsel
    import csv # 内置模块 不需要大家安装
复制代码
    f = open('猫咪.csv', mode='a', encoding='utf-8', newline='')
    csv_writer = csv.DictWriter(f, fieldnames=['地区', '店名', '标题', '价格', '浏览次数', '卖家承诺', '在售只数',
                                           '年龄', '品种', '预防', '联系人', '联系方式', '异地运费', '是否纯种',
                                           '猫咪性别', '驱虫情况', '能否视频', '详情页'])
    
    # 写入表头
    csv_writer.writeheader()
复制代码
    response = requests.get(url=url, headers=headers)
    # 获取网页的文本数据  response.text  json() 获取json字典数据
    # print(response.text)
    # 解析数据 获取 猫咪的详情页url地址以及地区
    # 1. 要把 网页文本数据转换成 parsel 解析的 对象
    selector = parsel.Selector(response.text)
    # css选择器: 根据标签提取数据内容
    href = selector.css('div.content:nth-child(1) a::attr(href)').getall()
    # getall() 返回的是列表   get() 是返回的字符串
    areas = selector.css('div.content:nth-child(1) .area .color_333::text').getall()
    # 列表推导式
    areas = [i.strip() for i in areas]
复制代码
        # get() 取一个  返回是字符串  strip() 字符串的方法
        title = selector_1.css('.detail_text .title::text').get().strip() # 标题
        shop = selector_1.css('.dinming::text').get().strip() # 店名
        price = selector_1.css('.info1 div:nth-child(1) span.red.size_24::text').get() # 价格
        views = selector_1.css('.info1 div:nth-child(1) span:nth-child(4)::text').get() # 浏览次数
        # replace() 替换
        promise = selector_1.css('.info1 div:nth-child(2) span::text').get().replace('卖家承诺: ', '') # 浏览次数
        num = selector_1.css('.info2 div:nth-child(1) div.red::text').get() # 在售只数
        age = selector_1.css('.info2 div:nth-child(2) div.red::text').get() # 年龄
        kind = selector_1.css('.info2 div:nth-child(3) div.red::text').get() # 品种
        prevention = selector_1.css('.info2 div:nth-child(4) div.red::text').get() # 预防
        person = selector_1.css('div.detail_text .user_info div:nth-child(1) .c333::text').get() # 联系人
        phone = selector_1.css('div.detail_text .user_info div:nth-child(2) .c333::text').get() # 联系方式
        postage = selector_1.css('div.detail_text .user_info div:nth-child(3) .c333::text').get().strip() # 包邮
        purebred = selector_1.css('.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(1) .c333::text').get().strip() # 是否纯种
        sex = selector_1.css('.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(4) .c333::text').get().strip() # 猫咪性别
        video = selector_1.css('.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(4) .c333::text').get().strip() # 能否视频
        worming = selector_1.css('.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(2) .c333::text').get().strip() # 是否驱虫
        dit = {
            '地区': area,
            '店名': shop,
            '标题': title,
            '价格': price,
            '浏览次数': views,
            '卖家承诺': promise,
            '在售只数': num,
            '年龄': age,
            '品种': kind,
            '预防': prevention,
            '联系人': person,
            '联系方式': phone,
            '异地运费': postage,
            '是否纯种': purebred,
            '猫咪性别': sex,
            '驱虫情况': worming,
            '能否视频': video,
        }
        csv_writer.writerow(dit)
        print(title, area, shop, price, views, promise, num, age,
              kind, prevention, person, phone, postage, purebred, sex, video, worming, index_url, sep=' | ')

效果

数据可视化代码

python学习裙

python学习裙

python学习裙

Python学习群

分享源代码、解答疑难问题及提供教程的人均可加入此QQ群:261823976(点击关注)即可直接加入【Python学习群

请添加图片描述
复制代码
    import pandas as pd 
    pd.set_option('display.max_columns', None)
复制代码
    cat_info = pd.read_csv(r'C:\Users\青灯教育\Desktop\代码\猫咪.csv', encoding='utf-8', engine='python')
    cat_info.head(5)
复制代码
    from pyecharts import options as opts
    from pyecharts.charts import WordCloud
    from pyecharts.globals import SymbolType
    from pyecharts.globals import ThemeType
    
    
    words = [(i,1) for i in cat_info['品种'].unique()]
    c = (
    WordCloud(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add("", words,shape=SymbolType.DIAMOND)
    .set_global_opts(title_opts=opts.TitleOpts(title=""))
    )
    c.render('a.html')
复制代码
    cat_info['地区'] = cat_info['地区'].astype(str)
    cat_info['province'] = cat_info['地区'].map(lambda s: s.split('/')[0])
    pv = cat_info['province'].value_counts().reset_index()
复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Map
    from pyecharts.faker import Faker
    
    c = (
    Map(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add("", [list(z) for z in zip(list(pv['index']), list(pv['province']))], "china")
    .set_global_opts(
        title_opts=opts.TitleOpts(title="猫猫售卖省份分布"),
        visualmap_opts=opts.VisualMapOpts(max_=16500, is_piecewise=True),
    )
    )
    
    c.render_notebook()
复制代码
    # 交易品种占比树状图
    from pyecharts import options as opts
    from pyecharts.charts import TreeMap
    
    pingzhong = cat_info['品种'].value_counts().reset_index()
    data = [{'value':i[1],'name':i[0]} for i in zip(list(pingzhong['index']),list(pingzhong['品种']))]
    
    c = (
    TreeMap(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add("", data)
    .set_global_opts(title_opts=opts.TitleOpts(title=""))
    .set_series_opts(label_opts=opts.LabelOpts(position="inside"))
    )
    
    c.render_notebook()
复制代码
    # 
    price = cat_info.groupby('品种').mean()['价格'].reset_index()
    price['价格'] = round(price['价格'],0)
    price = price.sort_values(by='价格')
复制代码
    from pyecharts import options as opts
    from pyecharts.charts import PictorialBar
    from pyecharts.globals import SymbolType
    
    location = list(price['品种'])
    values = list(price['价格'])
    
    c = (
    PictorialBar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(location)
    .add_yaxis(
        "",
        values,
        label_opts=opts.LabelOpts(is_show=False),
        symbol_size=18,
        symbol_repeat="fixed",
        symbol_offset=[0, 0],
        is_symbol_clip=True,
        symbol=SymbolType.ROUND_RECT,
    )
    .reversal_axis()
    .set_global_opts(
        title_opts=opts.TitleOpts(title="均价排名"),
        xaxis_opts=opts.AxisOpts(is_show=False),
        yaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_show=False),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(opacity=0),
            
            ),
        ),
    )
    .set_series_opts(
        label_opts=opts.LabelOpts(position='insideRight')
    )
    )
    
    c.render_notebook()
复制代码
    # 年龄分布,柱状图
    cat_info['年龄'] = cat_info['年龄'].astype(str)
    age = cat_info['年龄'].map(lambda x: x.replace('个月','')).reset_index()
    def ages(s):
    if s == 'nan':
        return s
    s = int(s)
    if 1 <= s < 3: 
        return '1-3个月'
    if 3 <= s < 6: 
        return '3-6个月'
    if 6 <= s < 9:
        return '6-9个月'
    if 9 <= s < 12 :
        return '9-12个月'
    if s >= 12:
        return '1年以上'
    age['age'] = age['年龄'].map(ages)
    age = age['age'].value_counts().reset_index()
    age = age[age['index'] != 'nan']
复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Bar
    from pyecharts.faker import Faker
    
    x = ['1-3个月','3-6个月','6-9个月','9-12个月','1年以上']
    y = [69343,115288,18239,4139,5]
    
    c = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(x)
    .add_yaxis('', y)
    .set_global_opts(title_opts=opts.TitleOpts(title="猫龄分布"))
    )
    
    c.render_notebook()
复制代码
    ## 浏览次数是否跟价格成正比,散点图
    view = cat_info['浏览次数']
    money = cat_info['价格']
    
    import pyecharts.options as opts
    from pyecharts.charts import Scatter
    
    
    x_data = list(view)[:1000]
    y_data = list(money)[:1000]
    
    c = (
    Scatter(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="",
        y_axis=y_data,
        symbol_size=20,
        label_opts=opts.LabelOpts(is_show=False),
    )
    .set_series_opts()
    .set_global_opts(
        xaxis_opts=opts.AxisOpts(
            type_="value", 
            splitline_opts=opts.SplitLineOpts(is_show=True),
            name='浏览次数'
        ),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
            name='价格'
        ),
        tooltip_opts=opts.TooltipOpts(is_show=False),
    )
    )
    
    c.render_notebook()
复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Boxplot
    
    v1 = [
    list(a_p[a_p['age'] == '1-3个月']['价格']),
    list(a_p[a_p['age'] == '3-6个月']['价格']),
    list(a_p[a_p['age'] == '6-9个月']['价格']),
    list(a_p[a_p['age'] == '9-12个月']['价格']),
    list(a_p[a_p['age'] == '1年以上']['价格'])
    ]
    
    c = Boxplot(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    c.add_xaxis(["1-3个月", "3-6个月",'6-9个月','9-12个月','1年以上'])
    c.add_yaxis("喵喵", c.prepare_data(v1))
    c.set_global_opts(title_opts=opts.TitleOpts(title="猫龄&价格"))
    
    c.render_notebook()
复制代码
    # 价格是否与预防有关,箱型图
    yufang = cat_info[['价格','预防']]
    yufang['预防'].unique()
复制代码
    from pyecharts import options as opts
    from pyecharts.charts import Boxplot
    
    v1 = [
    list(yufang[yufang['预防'] == '0针疫苗']['价格']),
    list(yufang[yufang['预防'] == '1针疫苗']['价格']),
    list(yufang[yufang['预防'] == '2针疫苗']['价格']),
    list(yufang[yufang['预防'] == '3针疫苗']['价格']),
    ]
    
    c = Boxplot(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
    c.add_xaxis(["0针疫苗", "1针疫苗",'2针疫苗','3针疫苗'])
    c.add_yaxis("喵喵", c.prepare_data(v1))
    c.set_global_opts(title_opts=opts.TitleOpts(title="防疫&价格"))
    
    c.render_notebook()

尾语 💝

好了,我的这篇文章写到这里就结束啦!

有更多建议或问题可以评论区或私信我哦!一起加油努力叭(ง •_•)ง

喜欢就关注一下博主,或点赞收藏评论一下我的文章叭!!!

请添加图片描述

全部评论 (0)

还没有任何评论哟~