Advertisement

ubuntu14.04 Anaconda 的安装使用

阅读量:

利用anaconda来配置python环境

先到https://www.continuum.io/downloads 下载anaconda, 现在的版本有python2.7版本和python3.6版本,下载好对应版本、对应系统的anaconda,它实际上是一个sh脚本文件,大约500M左右。我下载的是linux版的python 2.7版本。

下载成功后,在终端执行(2.7版本):

复制代码
    # bash Anaconda2-2.4.1-Linux-x86_64.sh

在安装的过程中,会问你安装路径,直接回车默认就可以了。有个地方问你是否将anaconda安装路径加入到环境变量(.bashrc)中,这个一定要输入yes

安装成功后,会有当前用户根目录下生成一个anaconda2的文件夹,里面就是安装好的内容。

输入conda list 就可以查询,你现在安装了哪些库,常用的numpy, scipy名列其中。如果你还有什么包没有安装上,可以运行

conda install *** 来进行安装,

如果某个包版本不是最新的,运行 conda update *** 就可以了。

首次conda list 出现找不到这个命令的错误:在终端输入export PATH=~/anaconda2/bin:$PATH

编译python接口

首先,将caffe根目录下的python文件夹加入到环境变量

打开配置文件bashrc,在最后面加入

复制代码
    export PYTHONPATH=/home/xxx/caffe/python:$PYTHONPATH

sudo ldconfig

因为之前配置好的caffe,,不能再继续执行sudo make与sudo make python等指令,,首先运行

复制代码
 sudo make clean

    
 sudo make pycaffe clean
    
 sudo make test clean
    
 sudo make runtest clean

然后修改Makefile.config文件,下边是我的

复制代码
 ## Refer to http://caffe.berkeleyvision.org/installation.html

    
 # Contributions simplifying and improving our build system are welcome!
    
  
    
 # cuDNN acceleration switch (uncomment to build with cuDNN).
    
  USE_CUDNN := 1
    
  
    
 # CPU-only switch (uncomment to build without GPU support).
    
 # CPU_ONLY := 1
    
  
    
 # uncomment to disable IO dependencies and corresponding data layers
    
 # USE_OPENCV := 1
    
 # USE_LEVELDB := 0
    
 # USE_LMDB := 0
    
  
    
 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    
 #	You should not set this flag if you will be reading LMDBs with any
    
 #	possibility of simultaneous read and write
    
 # ALLOW_LMDB_NOLOCK := 1
    
  
    
 # Uncomment if you're using OpenCV 3
    
  OPENCV_VERSION := 3
    
   23. # To customize your choice of compiler, uncomment and set the following.
    
 # N.B. the default for Linux is g++ and the default for OSX is clang++
    
 # CUSTOM_CXX := g++
    
   27. # CUDA directory contains bin/ and lib/ directories that we need.
    
 CUDA_DIR := /usr/local/cuda
    
 # On Ubuntu 14.04, if cuda tools are installed via
    
 # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    
 # CUDA_DIR := /usr
    
   33. # CUDA architecture setting: going with all of them.
    
 # For CUDA < 6.0, comment the *_50 lines for compatibility.
    
 CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
    
 		-gencode arch=compute_20,code=sm_21 \
    
 		-gencode arch=compute_30,code=sm_30 \
    
 		-gencode arch=compute_35,code=sm_35 \
    
 		-gencode arch=compute_50,code=sm_50 \
    
 		-gencode arch=compute_50,code=compute_50
    
   42. # BLAS choice:
    
 # atlas for ATLAS (default)
    
 # mkl for MKL
    
 # open for OpenBlas
    
 BLAS := atlas
    
 # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    
 # Leave commented to accept the defaults for your choice of BLAS
    
 # (which should work)!
    
 # BLAS_INCLUDE := /path/to/your/blas
    
 # BLAS_LIB := /path/to/your/blas
    
   53. # Homebrew puts openblas in a directory that is not on the standard search path
    
 # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    
 # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
   57. # This is required only if you will compile the matlab interface.
    
 # MATLAB directory should contain the mex binary in /bin.
    
 # MATLAB_DIR := /usr/local
    
 # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
   62. # NOTE: this is required only if you will compile the python interface.
    
 # We need to be able to find Python.h and numpy/arrayobject.h.
    
 PYTHON_INCLUDE := /usr/include/python2.7 \
    
 		/usr/lib/python2.7/dist-packages/numpy/core/include
    
 # Anaconda Python distribution is quite popular. Include path:
    
 # Verify anaconda location, sometimes it's in root.
    
  ANACONDA_HOME := $(HOME)/anaconda2
    
  PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
    
 		 $(ANACONDA_HOME)/include/python2.7 \
    
 		 $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
    
  
    
 # Uncomment to use Python 3 (default is Python 2)
    
 # PYTHON_LIBRARIES := boost_python3 python3.5m
    
 # PYTHON_INCLUDE := /usr/include/python3.5m \
    
 #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
  
    
 # We need to be able to find libpythonX.X.so or .dylib.
    
 PYTHON_LIB := /usr/lib
    
 # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
  
    
 # Homebrew installs numpy in a non standard path (keg only)
    
 # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    
 # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
  
    
 # Uncomment to support layers written in Python (will link against Python libs)
    
  WITH_PYTHON_LAYER := 1
    
  
    
 # Whatever else you find you need goes here.
    
 INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
    
 LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
  
    
 # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    
 # INCLUDE_DIRS += $(shell brew --prefix)/include
    
 # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
  
    
 # Uncomment to use `pkg-config` to specify OpenCV library paths.
    
 # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    
 USE_PKG_CONFIG := 1
    
  
    
 # N.B. both build and distribute dirs are cleared on `make clean`
    
 BUILD_DIR := build
    
 DISTRIBUTE_DIR := distribute
    
  
    
 # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    
 # DEBUG := 1
    
  
    
 # The ID of the GPU that 'make runtest' will use to run unit tests.
    
 TEST_GPUID := 0
    
  
    
 # enable pretty build (comment to see full commands)
    
 Q ?= @

然后执行

复制代码
 sudo make

    
 sudo make pycaffe 
    
 sudo make test 
    
 sudo make runtest

sudo make runtest 没编译过去,也不是必须的,先不管了。。

最终查看python接口是否编译成功:

进入python环境,进行import操作

复制代码
 python

    
 import caffe

如果没有提示错误,则编译成功

安装jupyter

安装了python还不行,还得安装一下ipython,后者更加方便快捷,更有自动补全功能。而ipython notebook是ipython的最好展现方式。最新的版本改名为jupyter notebook,我们先来安装一下。(如果安装了anaconda, jupyter notebook就已经自动装好,不需要再安装)

sudo pip install jupyter 提示sudo:pip:command not find

去掉sudo 执行,,成功安装!!

原因是:我们知道在执行Linux命令时,如果在其前面加上sudo,就表示以root权限执行。但是这其实是有一个前提的,就是只有那些Linux内置系统命令才可以用如此的形式来执行,而对于Shell内置命令或其他用户自定义命令、别名等,是不能用sudo来使用root权限的。

复制代码
    $ jupyter notebook

就会在浏览器中打开notebook, 点击右上角的New-python2, 就可以新建一个网页一样的文件,扩展名为ipynb。在这个网页上,我们就可以像在命令行下面一样运行python代码了。输入代码后,按shift+enter运行,更多的快捷键,可点击上方的help-Keyboard shortcuts查看,或者先按esc退出编辑状态,再按h键查看。

在jupyter里输入

复制代码
 import numpy as np

    
 import matplotlib.pyplot as plt
    
 %matplotlib inline
    
 import caffe
    
 caffe_root='/home/shan/caffe/'
    
 import os,sys
    
 os.chdir(caffe_root)
    
 sys.path.insert(0,caffe_root+'python')
    
 im = caffe.io.load_image('examples/images/cat.jpg')
    
 print im.shape
    
 plt.imshow(im)
    
 plt.axis('off')

报错:No module named google.protobuf.internal

解决:sudo chmod 777 -R anaconda2

conda install protobuf

全部评论 (0)

还没有任何评论哟~