Image Derivative , optical flow and Computer Vision
目录
我的另一篇:
其他参考:
Computer vision:
Taking the derivative of an image involves calculating what's known as a discrete derivative, which approximates rather than precisely represents derivatives. A straightforward example is computing the x-directional derivative at pixel x1 by determining the difference between its neighboring pixels (x0 and x2).








Image Derivative · Chris McCormick
Courses – Center for Research in Computer Vision
| Dr. Mubarak Shah | 
|---|
https://towardsdatascience.com/image-derivative-8a07a4118550

https://homes.cs.washington.edu/~shapiro/EE596/
我的另一篇:
该文章深入探讨了核函数、卷积、相关性和HOG算法的相关内容。
其他参考:
个人网站 - Zhu Li's Home at CSEE和UMKC
[春季学期(课程编号),电子与计算机工程(CSE)系的计算机视觉技术课程](https://sce.umkc.edu/faculty-sites/lizhu/teaching/ spring.umd.edu/main-cv.html "春季学期(课程编号),电子与计算机工程(CSE)系的计算机视觉技术课程")
该搜索页面涉及计算机视觉与MATLAB的学习大纲,并通过特定参数配置以UTF-8编码传输数据
Computer Vision - JHU Computer Science
16-385 Computer Vision, Spring 2020
https://github.com/adeveloperdiary/blog/tree/master/Computer_Vision
The figure illustrates the process of creating a Gaussian blur effect in MATLAB, offering a detailed explanation for users seeking guidance on implementing this technique.
屏幕捕获显示了对图像进行水平和垂直方向的一维高斯滤波的结果
Why is it that mvnpdf and fspecial('gaussian') result in differing matrices in MatLab?
Computer vision:
Peter's Functions for Computer Vision
http://www.cs.unc.edu/~yangk/photog/a4.html
[GitHub - SMHendryx/RANSAC.m: RANSAC在Matlab中的实现及其相关函数.
GitHub - janavikumar/Homography_for_Linear_Image_Transformation is a MATLAB code used to generate and apply a homography matrix for the purpose of direct linear image transformation.
https://github.com/abhigarg-iitk/DLT_AND_RANSAC
https://github.com/yihui-he/panorama
该算法通过Harris角点检测器确定了图像中的感兴趣区域。随后,SIFT描述器用于生成兴趣点周围的特征描述。最后,RANSAC算法被用来拟合Homography变换模型。
https://github.com/rahul-kothari/Image-Stitching
https://github.com/PrachiP23/Image-Stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub - image_stitching
GitHub/GentleDell/Image-Stitching · Matlab代码用于拼接图像形成全景图
GitHub - bill2239/cv_Panorama: "Image Mosaicking Using MATLAB"
Calculating Disparity Using Deep Learning on LearnOpenCV # (https://learnopencv.com/disparity-estimation-using-deep-learning/ "LearnOpenCV #")
https://vision.middlebury.edu/stereo/
[Computer-Vision-Projects/Image Stitching Panorama at master · sooryamsharma/Computer-Vision-Projects · GitHub](https://github.com/sooryamsharma/Computer-Vision-Projects/tree/master/Image Stitching Panoroma "Computer-Vision-Projects/Image Stitching Panorama at master · sooryamsharma/Computer-Vision-Projects · GitHub)
A disparity map computed using SSD, CC, and NCC algorithm is stored in the file disparity_map_correlations.m in the main branch by Gandhali-Shastri on GitHub.
RANSAC:
https://github.com/sdg002/RANSAC
https://medium.com/mlearning-ai/outlier-detection-using-the-ransac-algorithm-de52670adb4a
RANSAC算法——深入学习就能彻底掌握_zhoucoolqi的博客-博客_ransac伪代码
该文章探讨了射影变换的概念及其计算方法。
射影变换是计算机视觉领域中的一个基础概念。
它被用来建立不同视角拍摄的图像之间的关系。
这一过程涉及在两个图像中找到对应的点。
这些点随后用于计算射影变换矩阵。
射影变换矩阵可以用来将一个图像变形以匹配另一个图像。
这一技术在机器人学和自动驾驶车辆等领域有着广泛的应用。
它允许在不同场景视图之间进行精确映射。
该文章深入解释了如何计算这种变换。
读者会发现这对掌握计算机视觉的基础原理非常有帮助。
