Advertisement

如何用yolov5训练使用——滑坡数据集 自然灾害洪水滑坡检测YOLO数据集模型2339张 2类 ,按照8比2划分为训练集和验证集,其中训练集【1871】张,验证集【468】张,模型分为【2】类】

阅读量:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如何使用YOLOv5模型进行自然灾害洪水滑坡检测任务,并提供详细的训练代码和数据集准备步骤。假设你已经有一个包含2339张图像的数据集,这些图像已经按类别分类存储在不同的文件夹中,并且提供了YOLO格式的标注文件。
在这里插入图片描述

项目结构
深色版本
disaster_detection/
├── dataset/
│ ├── images/
│ │ └── *.jpg
│ ├── labels/
│ │ └── *.txt
├── models/
│ └── yolov5/
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
├── weights/
│ └── best_model.pt
├── requirements.txt
└── README.md

  1. 安装依赖
    首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:

深色版本
torch
torchvision
numpy
pandas
matplotlib
tqdm
pyyaml
opencv-python
然后,使用以下命令安装依赖:

bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:
在这里插入图片描述

深色版本
dataset/
├── images/
│ └── *.jpg
├── labels/
│ └── *.txt
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,标签文件是YOLO格式的.txt文件。

  1. 数据集配置
    创建一个数据集类,用于加载和预处理数据。

3.1 src/utils.py
python
深色版本
import os
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image

class DisasterDetectionDataset(Dataset):
def init(self, image_dir, label_dir, transform=None):
self.image_dir = image_dir
self.label_dir = label_dir
self.transform = transform
self.image_files = os.listdir(image_dir)
self.label_files = os.listdir(label_dir)

复制代码
    def __len__(self):
    return len(self.image_files)
    
    def __getitem__(self, index):
    img_path = os.path.join(self.image_dir, self.image_files[index])
    label_path = os.path.join(self.label_dir, self.image_files[index].replace('.jpg', '.txt'))
    
    image = Image.open(img_path).convert("RGB")
    
    if os.path.exists(label_path):
        with open(label_path, 'r') as f:
            labels = f.readlines()
        labels = [line.strip().split() for line in labels]
        labels = [[int(label[0])] + list(map(float, label[1:])) for label in labels]
    else:
        labels = []
    
    if self.transform:
        image = self.transform(image)
    
    return image, labels
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    

def get_data_loaders(image_dir, label_dir, batch_size=16, num_workers=4):
transform = transforms.Compose([
transforms.Resize((640, 640)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

复制代码
    dataset = DisasterDetectionDataset(image_dir, label_dir, transform=transform)
    train_size = int(0.8 * len(dataset))
    val_size = len(dataset) - train_size
    
    train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size])
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
    
    return train_loader, val_loader
    
    
      
      
      
      
      
      
      
      
      
      
    
  1. 模型定义
    使用YOLOv5模型进行检测任务。这里我们使用预训练的YOLOv5模型,并对其进行微调。在这里插入图片描述

4.1 models/yolov5.py
python
深色版本
import torch
import torch.nn as nn
import torchvision.models as models

class YOLOv5(nn.Module):
def init(self, num_classes=2):
super(YOLOv5, self).init()
self.backbone = models.mobilenet_v2(pretrained=True).features
self.head = nn.Sequential(
nn.Conv2d(1280, 256, kernel_size=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, num_classes * 5, kernel_size=1) # 5 for bbox (x, y, w, h, conf)
)

复制代码
    def forward(self, x):
    x = self.backbone(x)
    x = self.head(x)
    return x
    
    
      
      
      
      
    
  1. 训练代码
    5.1 src/train.py
    python
    深色版本
    import torch
    import torch.optim as optim
    from torch.utils.tensorboard import SummaryWriter
    from tqdm import tqdm
    from models.yolov5 import YOLOv5
    from src.utils import get_data_loaders
    import torch.nn.functional as F

def train_model(image_dir, label_dir, epochs=100, batch_size=16, learning_rate=1e-4):
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

复制代码
    model = YOLOv5(num_classes=2).to(device)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    
    train_loader, val_loader = get_data_loaders(image_dir, label_dir, batch_size=batch_size)
    
    writer = SummaryWriter()
    
    for epoch in range(epochs):
    model.train()
    running_loss = 0.0
    for images, labels in tqdm(train_loader, desc=f"Epoch {epoch + 1}/{epochs}"):
        images = images.to(device)
        labels = [torch.tensor(label, dtype=torch.float32).to(device) for label in labels]
    
        optimizer.zero_grad()
        outputs = model(images)
        loss = 0.0
        for i in range(len(labels)):
            if len(labels[i]) > 0:
                pred = outputs[i, :, :, :5 * len(labels[i])]
                pred = pred.permute(2, 0, 1).reshape(-1, 5)
                target = labels[i][:, 1:]
                loss += criterion(pred, target)
        loss.backward()
        optimizer.step()
    
        running_loss += loss.item()
    
    train_loss = running_loss / len(train_loader)
    writer.add_scalar('Training Loss', train_loss, epoch)
    
    model.eval()
    running_val_loss = 0.0
    with torch.no_grad():
        for images, labels in val_loader:
            images = images.to(device)
            labels = [torch.tensor(label, dtype=torch.float32).to(device) for label in labels]
    
            outputs = model(images)
            loss = 0.0
            for i in range(len(labels)):
                if len(labels[i]) > 0:
                    pred = outputs[i, :, :, :5 * len(labels[i])]
                    pred = pred.permute(2, 0, 1).reshape(-1, 5)
                    target = labels[i][:, 1:]
                    loss += criterion(pred, target)
    
            running_val_loss += loss.item()
    
    val_loss = running_val_loss / len(val_loader)
    writer.add_scalar('Validation Loss', val_loss, epoch)
    
    print(f"Epoch {epoch + 1}/{epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
    
    torch.save(model.state_dict(), "weights/best_model.pt")
    writer.close()
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    

if name == “main ”:
image_dir = “dataset/images”
label_dir = “dataset/labels”
train_model(image_dir, label_dir)
6. 模型评估
训练完成后,可以通过验证集和测试集来评估模型的性能。示例如下:

6.1 src/predict.py
python
深色版本
import torch
import matplotlib.pyplot as plt
from models.yolov5 import YOLOv5
from src.utils import get_data_loaders
import numpy as np

def predict_and_plot(image_dir, label_dir, model_path, num_samples=5):
device = torch.device(“cuda” if torch.cuda.is_available() else “cpu”)

复制代码
    model = YOLOv5(num_classes=2).to(device)
    model.load_state_dict(torch.load(model_path))
    model.eval()
    
    _, val_loader = get_data_loaders(image_dir, label_dir)
    
    fig, axes = plt.subplots(num_samples, 2, figsize=(10, 5 * num_samples))
    with torch.no_grad():
    for i, (images, labels) in enumerate(val_loader):
        if i >= num_samples:
            break
    
        images = images.to(device)
        labels = [torch.tensor(label, dtype=torch.float32).to(device) for label in labels]
    
        outputs = model(images)
        outputs = outputs.cpu().numpy()
    
        images = images.cpu().numpy().transpose((0, 2, 3, 1))
        labels = [label.cpu().numpy() for label in labels]
    
        for j in range(len(images)):
            ax = axes[j] if num_samples > 1 else axes
            ax[0].imshow(images[j])
            ax[0].set_title(f"True: {labels[j]}")
            ax[0].axis('off')
    
            ax[1].imshow(images[j])
            ax[1].set_title(f"Predicted: {outputs[j]}")
            ax[1].axis('off')
    
    plt.tight_layout()
    plt.show()
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    

if name == “main ”:
image_dir = “dataset/images”
label_dir = “dataset/labels”
model_path = “weights/best_model.pt”
predict_and_plot(image_dir, label_dir, model_path)
7. 运行项目
确保你的数据集已经放在相应的文件夹中。
在项目根目录下运行以下命令启动训练:
bash
深色版本
python src/train.py
训练完成后,运行以下命令进行评估和可视化:
bash
深色版本
python src/predict.py
8. 功能说明
训练模型:train.py脚本用于训练YOLOv5模型,使用均方误差损失函数和Adam优化器。
评估模型:predict.py脚本用于评估模型性能,并可视化输入图像、真实标签和预测结果。
9. 详细注释
utils.py
数据集类:定义了一个DisasterDetectionDataset类,用于加载和预处理数据。
数据加载器:定义了一个get_data_loaders函数,用于创建训练和验证数据加载器。
yolov5.py
YOLOv5模型:定义了一个基于MobileNetV2的YOLOv5模型,用于多标签检测任务。
train.py
训练函数:定义了一个train_model函数,用于训练YOLOv5模型。
训练过程:在每个epoch中,模型在训练集上进行前向传播和反向传播,并在验证集上进行评估。
predict.py
预测和可视化:定义了一个predict_and_plot函数,用于在验证集上进行预测,并可视化输入图像、真实标签和预测结果。

全部评论 (0)

还没有任何评论哟~