Advertisement

图像轮廓cv2.findContours(img,mode,method) //轮廓特征、轮廓近似等

阅读量:

cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
复制代码
 import cv2

    
 import numpy as np
    
 def cv_show(img,name):
    
     cv2.imshow(name,img)
    
     cv2.waitKey()
    
     cv2.destroyAllWindows()
    
  
    
 #二值
    
 img = cv2.imread('contours.png')
    
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    
 cv_show(thresh,'thresh')
    
 binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    
 #绘制轮廓
    
 cv_show(img,'img')
    
 #传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
    
 # 注意需要copy,要不原图会变。。。
    
 draw_img = img.copy()
    
 res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
    
 cv_show(res,'res')
    
 draw_img = img.copy()
    
 res = cv2.drawContours(draw_img, contours, 0, (0, 0, 255), 2)
    
 cv_show(res,'res')
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-16/Kc2pSIZjEmBC9kxMX1P67A8WQe5n.png)

轮廓特征

复制代码
 cnt = contours[0]

    
 #面积
    
 cv2.contourArea(cnt)
    
 #周长,True表示闭合的
    
 cv2.arcLength(cnt,True)
    
    
    
    
    python
    
    

轮廓近似

对于AB d1>阈值 则处理AC d2>阈值 则处理AD

类似于二分操作 不断进行 直到d<阈值为止(使用线段来近似轮廓)

复制代码
 import cv2

    
 import numpy as np
    
 def cv_show(img,name):
    
     cv2.imshow(name,img)
    
     cv2.waitKey()
    
     cv2.destroyAllWindows()
    
 img = cv2.imread('contours2.png')
    
  
    
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    
 binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    
 cnt = contours[0]
    
  
    
 draw_img = img.copy()
    
 res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
    
 cv_show(res,'res')
    
 #epsilon 为阈值可变  0.1 越大近似越不精确
    
 epsilon = 0.1*cv2.arcLength(cnt,True)
    
 approx = cv2.approxPolyDP(cnt,epsilon,True)
    
  
    
 draw_img = img.copy()
    
 res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
    
 cv_show(res,'res')
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-16/imkgrLbzeqU8h7P9nZJ6fadTEM1O.png)

边界矩形和边界外接圆

复制代码
 import cv2

    
 import numpy as np
    
 def cv_show(img,name):
    
     cv2.imshow(name,img)
    
     cv2.waitKey()
    
     cv2.destroyAllWindows()
    
 img = cv2.imread('contours2.png')
    
  
    
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    
 binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    
 cnt = contours[0]
    
  
    
 draw_img = img.copy()
    
 res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
    
 cv_show(res,'res')
    
 #epsilon 为阈值可变  0.1 越大近似越不精确
    
 epsilon = 0.1*cv2.arcLength(cnt,True)
    
 approx = cv2.approxPolyDP(cnt,epsilon,True)
    
  
    
 draw_img = img.copy()
    
 res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
    
 cv_show(res,'res')
    
  
    
 #边界矩形
    
 img = cv2.imread('contours.png')
    
  
    
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    
 binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    
 cnt = contours[0]
    
  
    
 x,y,w,h = cv2.boundingRect(cnt)
    
 img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
    
 cv_show(img,'img')
    
  
    
  
    
 area = cv2.contourArea(cnt)
    
 x, y, w, h = cv2.boundingRect(cnt)
    
 rect_area = w * h
    
 extent = float(area) / rect_area
    
 print ('轮廓面积与边界矩形比',extent)
    
  
    
 # 外接圆
    
 (x,y),radius = cv2.minEnclosingCircle(cnt)
    
 center = (int(x),int(y))
    
 radius = int(radius)
    
 img = cv2.circle(img,center,radius,(0,255,0),2)
    
 cv_show(img,'img')
    
    
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-16/HKXlOL03UGkqQhV1ya7DRxAitbov.png)

全部评论 (0)

还没有任何评论哟~