光流检测运动物体
发布时间
阅读量:
阅读量
光流稠密度检测运动物体calcOpticalFlowFarneback()方法的理解

prev:前一帧图像8位
next:当前帧图像8位
flow:计算出的光流图像
pyr_scale:金字塔层数,取经典参数0.5
levels:初始化金字塔层数
intertions:迭代次数
poly_n:像素邻域的大小
poly_sigma:高斯标准差
#include <iostream>
#include <opencv/cv.h>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/video/tracking.hpp>
using namespace std;
using namespace cv;
/*在经过calcOpticalFlowFarneback处理后,取当前帧与处理后图像对比,得出运动像素的位移和方向变化,并使用颜色画出来*/
void DrawOptFlowMap(const Mat& flowmap, Mat& cflowmap)
{//for循环内y+=5根据自己情况改变,效果不同。
for (int y=0;y<cflowmap.rows;y+=1)
{
for (int x=0;x<cflowmap.cols;x+=1)
{
Point2f fxy = flowmap.at<Point2f>(y,x);
line(cflowmap,Point(x,y),Point(cvRound(x+fxy.x),cvRound(y+fxy.y)),CV_RGB(0,255,0));
circle(cflowmap,Point(x,y),0.5,CV_RGB(255,0,0),1,0);
}
}
}
int main()
{
VideoCapture cap;
cap.open("TestVideo.avi");
if (!cap.isOpened())
{
cout<<"read video wrong";
}
Mat prevgray,gray,flow,cflow,frame;
do
{
cap>>frame;
cvtColor(frame,gray,CV_BGR2GRAY);
if (prevgray.data)
{
calcOpticalFlowFarneback(prevgray,gray,flow,0.5,3,15,3,5,1.2,0);
cvtColor(prevgray, cflow, CV_GRAY2RGB);
DrawOptFlowMap(flow,cflow);
imshow("FLOW",cflow);
}
if (waitKey(100) >= 0)
{
break;
}
swap(prevgray, gray);//获取当前帧
} while (1);
return 0;
}
全部评论 (0)
还没有任何评论哟~
