Advertisement

光流检测运动物体

阅读量:

光流稠密度检测运动物体calcOpticalFlowFarneback()方法的理解


prev:前一帧图像8位
next:当前帧图像8位
flow:计算出的光流图像
pyr_scale:金字塔层数,取经典参数0.5
levels:初始化金字塔层数
intertions:迭代次数
poly_n:像素邻域的大小
poly_sigma:高斯标准差

复制代码
    #include <iostream>
    #include <opencv/cv.h>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <opencv2/video/tracking.hpp>
    
    using namespace std;
    using namespace cv;
    /*在经过calcOpticalFlowFarneback处理后,取当前帧与处理后图像对比,得出运动像素的位移和方向变化,并使用颜色画出来*/
    void DrawOptFlowMap(const Mat& flowmap, Mat& cflowmap)
    {//for循环内y+=5根据自己情况改变,效果不同。
    for (int y=0;y<cflowmap.rows;y+=1)
    {
        for (int x=0;x<cflowmap.cols;x+=1)
        {
            Point2f fxy = flowmap.at<Point2f>(y,x);
            line(cflowmap,Point(x,y),Point(cvRound(x+fxy.x),cvRound(y+fxy.y)),CV_RGB(0,255,0));
            circle(cflowmap,Point(x,y),0.5,CV_RGB(255,0,0),1,0);
        }
    
    }
    }
    int main()
    {
    VideoCapture cap;
    cap.open("TestVideo.avi");
    
    if (!cap.isOpened())
    {
        cout<<"read video wrong";
    }
    
    Mat prevgray,gray,flow,cflow,frame;
    
    do 
    {
        cap>>frame;
        cvtColor(frame,gray,CV_BGR2GRAY);
    
        if (prevgray.data)
        {
            calcOpticalFlowFarneback(prevgray,gray,flow,0.5,3,15,3,5,1.2,0);
            cvtColor(prevgray, cflow, CV_GRAY2RGB);
    
            DrawOptFlowMap(flow,cflow);
    
            imshow("FLOW",cflow);
        }
        if (waitKey(100) >= 0)
        {
            break;
        }
    
        swap(prevgray, gray);//获取当前帧
    
    } while (1);
    
    return 0;
    }

全部评论 (0)

还没有任何评论哟~