FSL-flirt+fnirt--线性配准和非线性配准
发布时间
阅读量:
阅读量
BET
bet T1W T1W_brained -f 0.3 -R -S -B
bet DTI/b0 DTI/b0.bet -m -f 0.2 -R
fslmath
fslmaths inputVolume -add inputVolume2 output_volume
fslmaths T1 -mul T1W_brained.nii.gz T1_brained
重采样-mrgrid
mrgrid FA.nii.gz regrid -vox 2 FA_upsampled.nii.gz -force #重采样
mrgrid IN/dwi_denoised_unringed_preproc_unbiased.mif regrid -vox 1.25 IN/dwi_denoised_unringed_preproc_unbiased_upsampled.mif -force
mkdir preprocessing
for SUBJ in $(ls | grep *.nii.gz | cut -d . -f1); do # 位置
flirt -in ${SUBJ}.nii.gz -ref ${FSLDIR}/data/standard/FMRIB58_FA_1mm.nii.gz -dof 12 -omat preprocessing/${SUBJ}_indiv2std.mat ## Affine transform--线性配准
fnirt --in=${SUBJ}.nii.gz --aff=preprocessing/${SUBJ}_indiv2std.mat --config=FA_2_FMRIB58_1mm.cnf --cout=preprocessing/${SUBJ}_warp_indiv2std.nii.gz --iout=preprocessing/${SUBJ}_instd.nii.gz ## non-linear transform --非线性配准
done
flirt+fnirt
flirt -in subj_mean.nii.gz -ref ${FSLDIR}/data/standard/FMRIB58_FA_1mm.nii.gz -dof 12 -omat subj_mean_indiv2std.mat ## non-linear transform
fnirt --in=subj_mean --aff=subj_mean_indiv2std.mat --config=FA_2_FMRIB58_1mm.cnf --cout=subj_mean_warp_indiv2std --iout=subj_mean_instd
制作mask --0,或1
fslmaths T1W.nii -thr 0.5 -bin T1W_mask.nii.gz
fslmath
for SUBJ in ${SUBJ_LIST}; do
## Segment GM### Skull-stripping
bet T1w/${SUBJ} T1w/${SUBJ}_skull_stripped -f 0.3 -R -S -B
### Segment T1w into CSF/GM/WM
fast -t 1 -g -B -b -p -o T1w/${SUBJ}_fast T1w/${SUBJ}_skull_stripped
## Register GM to MNI
### Register T1w to MNI--先将T1W经过flirt和fnirt配准到FMRIB152,再将分割的GM标准化到MNI152
flirt -ref ${FSLDIR}/data/standard/MNI152_T1_2mm_brain -in T1w/${SUBJ}_fast_restore -omat T1w/${SUBJ}_indiv2MNI.mat
fnirt --in=T1w/${SUBJ}_fast_restore --aff=T1w/${SUBJ}_indiv2MNI.mat --cout=T1w/${SUBJ}_indiv2MNI_warp --config=T1_2_MNI152_2mm
### applywarp to GM and move it into MNI
applywarp --ref=${FSLDIR}/data/standard/MNI152_T1_2mm_brain --in=T1w/${SUBJ}_fast_pve_1 --warp=T1w/${SUBJ}_indiv2MNI_warp --out=T1w/${SUBJ}_fast_pve_1_inMNI &
# 1. 与标准 FA 图像对齐 #vba脚本
mkdir preprocessing
for SUBJ in $(ls | grep _FA.nii.gz | cut -d . -f1); do # 位置 ## Affine transform
flirt -in ${SUBJ}.nii.gz -ref ${FSLDIR}/data/standard/FMRIB58_FA_1mm.nii.gz -dof 12 -omat preprocessing/${SUBJ}_indiv2std.mat ## non-linear transform
fnirt --in=${SUBJ}.nii.gz --aff=preprocessing/${SUBJ}_indiv2std.mat --config=FA_2_FMRIB58_1mm.cnf --cout=preprocessing/${SUBJ}_warp_indiv2std.nii.gz --iout=preprocessing/${SUBJ}_instd.nii.gz
done
flirt -in subj_mean.nii.gz -ref ${FSLDIR}/data/standard/FMRIB58_FA_1mm.nii.gz -dof 12 -omat subj_mean_indiv2std.mat ## non-linear transform
fnirt --in=subj_mean --aff=subj_mean_indiv2std.mat --config=FA_2_FMRIB58_1mm.cnf --cout=subj_mean_warp_indiv2std --iout=subj_mean_instd
全部评论 (0)
还没有任何评论哟~
