【Kaggle 学习笔记】| Intro to Machine Learning
发布时间
阅读量:
阅读量
本课程从数据导入开始,开始机器学习步骤的引导
基础的数据探索
# 读取数据
melbourne_data = pd.read_csv(melbourne_file_path)
melbourne_data.describe()
melbourne_data.columns # 标题目录
melbourne_data = melbourne_data.dropna(axis=0) # 去除有丢失值的行
python
构建简单的模型
# 选取X和y
melbourne_features = ['Rooms', 'Bathroom', 'Landsize', 'Lattitude', 'Longtitude']
X = melbourne_data[melbourne_features]
y = melbourne_data.Price
# 构建模型
from sklearn.tree import DecisionTreeRegressor
# 选择模型
melbourne_model = DecisionTreeRegressor(random_state=1)
# 模型拟合
melbourne_model.fit(X, y)
# 预测结果
melbourne_model.predict(X.head())
# 保存输出文件(这里的数据与上述代码中的数据不是同一个数据集,仅提供模板参考)
output = pd.DataFrame({'Id': test_data.Id,
'SalePrice': test_preds})
output.to_csv('submission.csv', index=False)
python

验证模型性能
rom sklearn.model_selection import train_test_split
# 随机选出数据训练集、测试集
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state = 0) # 选择策略跟随机种子random_state有关
melbourne_model = DecisionTreeRegressor()
melbourne_model.fit(train_X, train_y)
# 评价模型预测结果的好坏
val_predictions = melbourne_model.predict(val_X)
print(mean_absolute_error(val_y, val_predictions))
python

相关问题
from sklearn.metrics import mean_absolute_error
from sklearn.tree import DecisionTreeRegressor
# 设定一个求mae的函数
def get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y):
model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0)
model.fit(train_X, train_y)
preds_val = model.predict(val_X)
mae = mean_absolute_error(val_y, preds_val)
return(mae)
# 通过网格搜索,来得到一个较好的叶子结点超参数,避免出现欠拟合或过拟合现象
candidate_max_leaf_nodes = [5, 25, 50, 100, 250, 500]
scores = {leaf_size: get_mae(leaf_size, train_X, val_X, train_y, val_y) for leaf_size in candidate_max_leaf_nodes}
best_tree_size = min(scores, key=scores.get)
python

全部评论 (0)
还没有任何评论哟~
