图像特征提取_Hog图像特征提取算法,HOG

点击上方「蓝字」关注我

HOG图像特征提取算法
-
HOG简介
-
HOG特点
-
HOG计算步骤
-
HOG参数计算
-
HOG提取特征效果
-
HOG代码实现
HOG简介
HOG全称:方向梯度直方图(Histogram of Oriented Gradient),发表于2005年的CVPR,是一种图像特征提取算法,和SVM分类器结合应用于行人检测领域。HOG通过计算图像中每个像素的梯度的大小和方向,来获取图像的梯度特征,是一种特征描述子。
HOG特点
1.由于计算局部直方图和归一化,所以它对图像几何的和光学的形变都能保持很好的不变性;
2.细微的动作可以被忽略而不影响检测效果。
HOG计算步骤
1.对输入图像进行灰度化
2.利用gamma校正法对图像进行颜色空间归一化;
3.计算图像中每个像素的梯度大小和方向;
4.将图像划分cells,计算每个cell内的梯度直方图;
5.将每几个cell组成一个block,计算每个block内的梯度特征;
6.将图像中所有block的梯度特征组合起来就得到了图像的特征描述子;
7.将图像特征输入分类器进行分类。
HOG参数计算
计算流程
图像(image)->滑动图像块(block)->细胞单元(cells)
1.block个数计算
假设图像大小为128x128,block大小为16x16, block stride为8x8
则block个数 = ((128-16)/8+1) x ((128-16)/8 +1) = 15x15 = 2252.每个block内的cell个数计算
假设cell size为8x8
则cell个数 = (16x16) / (8x8) = 43.每张图特征维度
假设直方图等级数 bins = 9
则每张图的特征维度 = 225 x 4 x 9 = 8100
HOG提取特征效果
原图:
HOG特征图:

HOG代码实现
1.基于python的scikit-image库提供了HOG特征提取的接口:
from skimage import feature as ftfeatures = ft.hog(image, # input image orientations=ori, # number of bins pixels_per_cell=ppc, # pixel per cell cells_per_block=cpb, # cells per blcok block_norm = 'L1', # block norm : str {‘L1’, ‘L1-sqrt’, ‘L2’, ‘L2-Hys’} transform_sqrt = True, # power law compression (also known as gamma correction) feature_vector=True, # flatten the final vectors visualise=False) # return HOG map
应用示例:
from skimage.feature import hoggray = rgb2gray(image) / 255.0fd = hog(gray, orientations=12, block_norm='L1', pixels_per_cell=[10, 10], cells_per_block=[4, 4], visualize=False, transform_sqrt=True)
2.HOG代码实现
import cv2import numpy as npimport mathimport matplotlib.pyplot as pltclass Hog_descriptor(): def __init__(self, img, cell_size=16, bin_size=8): self.img = img self.img = np.sqrt(img / np.max(img)) self.img = img * 255 self.cell_size = cell_size self.bin_size = bin_size self.angle_unit = 360 / self.bin_size def extract(self): height, width = self.img.shape # 计算图像的梯度大小和方向 gradient_magnitude, gradient_angle = self.global_gradient() gradient_magnitude = abs(gradient_magnitude) cell_gradient_vector = np.zeros((int(height / self.cell_size), int(width / self.cell_size), self.bin_size))for i in range(cell_gradient_vector.shape[0]):for j in range(cell_gradient_vector.shape[1]): # cell内的梯度大小 cell_magnitude = gradient_magnitude[i * self.cell_size:(i + 1) * self.cell_size, j * self.cell_size:(j + 1) * self.cell_size] # cell内的梯度方向 cell_angle = gradient_angle[i * self.cell_size:(i + 1) * self.cell_size, j * self.cell_size:(j + 1) * self.cell_size] # 转化为梯度直方图格式 cell_gradient_vector[i][j] = self.cell_gradient(cell_magnitude, cell_angle) # 绘制梯度直方图 hog_image = self.render_gradient(np.zeros([height, width]), cell_gradient_vector) # block组合、归一化 hog_vector = []for i in range(cell_gradient_vector.shape[0] - 1):for j in range(cell_gradient_vector.shape[1] - 1): block_vector = [] block_vector.extend(cell_gradient_vector[i][j]) block_vector.extend(cell_gradient_vector[i][j + 1]) block_vector.extend(cell_gradient_vector[i + 1][j]) block_vector.extend(cell_gradient_vector[i + 1][j + 1]) mag = lambda vector: math.sqrt(sum(i ** 2 for i in vector)) magnitude = mag(block_vector)if magnitude != 0: normalize = lambda block_vector, magnitude: [element / magnitude for element in block_vector] block_vector = normalize(block_vector, magnitude) hog_vector.append(block_vector)return hog_vector, hog_image def global_gradient(self): gradient_values_x = cv2.Sobel(self.img, cv2.CV_64F, 1, 0, ksize=5) gradient_values_y = cv2.Sobel(self.img, cv2.CV_64F, 0, 1, ksize=5) gradient_magnitude = cv2.addWeighted(gradient_values_x, 0.5, gradient_values_y, 0.5, 0) gradient_angle = cv2.phase(gradient_values_x, gradient_values_y, angleInDegrees=True)return gradient_magnitude, gradient_angle def cell_gradient(self, cell_magnitude, cell_angle): orientation_centers = [0] * self.bin_sizefor i in range(cell_magnitude.shape[0]):for j in range(cell_magnitude.shape[1]): gradient_strength = cell_magnitude[i][j] gradient_angle = cell_angle[i][j] min_angle, max_angle, mod = self.get_closest_bins(gradient_angle) orientation_centers[min_angle] += (gradient_strength * (1 - (mod / self.angle_unit))) orientation_centers[max_angle] += (gradient_strength * (mod / self.angle_unit))return orientation_centers def get_closest_bins(self, gradient_angle): idx = int(gradient_angle / self.angle_unit) mod = gradient_angle % self.angle_unitreturn idx, (idx + 1) % self.bin_size, mod def render_gradient(self, image, cell_gradient): cell_width = self.cell_size / 2 max_mag = np.array(cell_gradient).max()for x in range(cell_gradient.shape[0]):for y in range(cell_gradient.shape[1]): cell_grad = cell_gradient[x][y] cell_grad /= max_mag angle = 0 angle_gap = self.angle_unitfor magnitude in cell_grad: angle_radian = math.radians(angle) x1 = int(x * self.cell_size + magnitude * cell_width * math.cos(angle_radian)) y1 = int(y * self.cell_size + magnitude * cell_width * math.sin(angle_radian)) x2 = int(x * self.cell_size - magnitude * cell_width * math.cos(angle_radian)) y2 = int(y * self.cell_size - magnitude * cell_width * math.sin(angle_radian)) cv2.line(image, (y1, x1), (y2, x2), int(255 * math.sqrt(magnitude))) angle += angle_gapreturn imageimg = cv2.imread('0.jpg', cv2.IMREAD_GRAYSCALE)hog = Hog_descriptor(img, cell_size=8, bin_size=9)vector, image = hog.extract()# 输出图像的特征向量shapeprint(np.array(vector).shape)plt.imshow(image, cmap=plt.cm.gray)plt.show()

