Advertisement

猴痘病识别(pytorch)

阅读量:

🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊 | 接辅导、项目定制

猴痘病识别(pytorch)

  • 一、前言

  • 二、我的环境

  • 三、准备阶段

    • 1.设置计算的工具
    • 2.导入数据
    • 3. 数据预处理
    • 4. 划分数据集
  • 四、构建CNN网络

  • 五、训练模型

    • 1、设置超参数
    • 2、编写训练函数
    • 3、编写测试函数
    • 4、正式训练
  • 六、结果可视化

    • 1、损失函数和准确率
    • 2、指定图片进行预测
  • 七、保存并加载模型

一、前言

二、我的环境

电脑系统:Windows 10

语言环境:Python 3.8.18

编译器:jupyter notebook

深度学习环境:torch == 1.13.1+cu116

复制代码
                      torchvision==0.14.1+cu116
    
     TensorFlow 2.13.1

显卡及显存: Tesla V100-PCIE-32GB

三、准备阶段

1.设置计算的工具

设置是否使用GPU进行计算以及导入深度学习计算相关的包和依赖。

复制代码
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets
    
    import os,PIL,pathlib
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    device
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/Oo71qpbzGEudL8cDJ3PIX59iCrgR.png)

2.导入数据

划分好训练集和测试集,并利用pathlib函数导入数据

复制代码
    import os,PIL,random,pathlib
    
    data_dir = '/home/kaijiang/zlf/ task/the fourth week/'
    data_dir = pathlib.Path(data_dir)
    
    data_paths = list(data_dir.glob('*'))
    classeNames = [str(path).split("\ ")[0] for path in data_paths]
    classeNames
    
    
    python
    
    

3. 数据预处理

对导入数据进行统一转化并进行查看数据类型进行归类,结果如下:

复制代码
    total_datadir = '/home/kaijiang/zlf/ task/the fourth week/'
    train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
    ])
    
    total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
    total_data
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/VtS4IxQqRgzhrvMnLbHFy7lK50PU.png)
在这里插入图片描述

这里我们使用了transforms.Compose函数,其用于将多个图像变换操作组合成一个串行的变换序列。这样可以方便地对数据集进行一系列预处理操作,例如裁剪、缩放、标准化等。
transforms.Compose([ transform1,transform2,transform3,可以包含更多的变换操作])

datasets.ImageFolder是 PyTorch 中用于加载图像数据集的函数,通常用于处理文件夹结构中的图像数据集。该函数能够自动地将指定文件夹中的图像按照类别进行分类,并创建一个数据集对象。

4. 划分数据集

复制代码
    train_size = int(0.8 * len(total_data))
    test_size  = len(total_data) - train_size
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
    train_dataset, test_dataset
    
    
    python
    
    
在这里插入图片描述

四、构建CNN网络

复制代码
    import torch.nn.functional as F
    
    class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
      
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))
    
    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)
    
        return x
    
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print("Using {} device".format(device))
    
    model = Network_bn().to(device)
    model
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/MvLzONDT7cUJpA0xHkRGPVSBnEd9.png)

五、训练模型

1、设置超参数

复制代码
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    learn_rate = 1e-4 # 学习率
    opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
    
    
    python
    
    

2、编写训练函数

复制代码
    def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)   
    
    train_loss, train_acc = 0, 0 
    
    for X, y in dataloader:  
        X, y = X.to(device), y.to(device)
        
       
        pred = model(X)         
        loss = loss_fn(pred, y) 
        optimizer.zero_grad()  
        loss.backward()        
        optimizer.step()     
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches
    
    return train_acc, train_loss
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/5r4tBl0G9YAPkmc1Qgiu7WFjwDTJ.png)

3、编写测试函数

复制代码
    def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
    test_acc  /= size
    test_loss /= num_batches
    
    return test_acc, test_loss
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/zXb9IqCQ3RjoJrv8HS1KBFVUYEiO.png)

4、正式训练

复制代码
    epochs     = 20
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    print('Done')
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/psV02SvetyWCPDdH3Zb4TAYg8BcO.png)
在这里插入图片描述

六、结果可视化

1、损失函数和准确率

复制代码
    import matplotlib.pyplot as plt
    #隐藏警告
    import warnings
    warnings.filterwarnings("ignore")               #忽略警告信息
    plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
    plt.rcParams['figure.dpi']         = 100        #分辨率
    
    epochs_range = range(epochs)
    
    plt.figure(figsize=(12, 3))
    plt.subplot(1, 2, 1)
    
    plt.plot(epochs_range, train_acc, label='Training Accuracy')
    plt.plot(epochs_range, test_acc, label='Test Accuracy')
    plt.legend(loc='lower right')
    plt.title('Training and Validation Accuracy')
    
    plt.subplot(1, 2, 2)
    plt.plot(epochs_range, train_loss, label='Training Loss')
    plt.plot(epochs_range, test_loss, label='Test Loss')
    plt.legend(loc='upper right')
    plt.title('Training and Validation Loss')
    plt.show()
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/BgTA5GWPcfx0FRlviodzpJ7IVaKE.png)
在这里插入图片描述

2、指定图片进行预测

复制代码
    from PIL import Image 
    
    classes = list(total_data.class_to_idx)
    
    def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片
    
    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)
    
    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    
    
    python
    
    
![](https://ad.itadn.com/c/weblog/blog-img/images/2025-08-17/EzPSfOJY3sdcZBV5KmwhlXuGkFov.png)
复制代码
    # 预测训练集中的某张照片
    predict_one_image(image_path='/home/kaijiang/zlf/ task/the fourth week/Monkeypox/M01_01_00.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes
    
    
    python
    
    

七、保存并加载模型

在这里插入图片描述

全部评论 (0)

还没有任何评论哟~