医疗疾病预测实战:机器学习乳腺癌疾病预测
发布时间
阅读量:
阅读量
视频介绍了基于机器学习的医疗乳腺癌数据的乳腺癌疾病预测,并提供了完整的代码和数据集分享。效果演示通过图片展示了模型的性能和结果。代码部分详细描述了特征提取、数据分析和可视化过程,并附有资源链接至文库中的相关资料。
视频讲解:基于机器学习的医疗乳腺癌数据的乳腺癌疾病预测 完整代码数据分享_哔哩哔哩_bilibili
效果演示:



代码:
#第一步!导入我们需要的工具
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import svm
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore')
data.drop("Unnamed: 32",axis=1,inplace=True)
data.drop("id",axis=1,inplace=True)
data.columns
features_mean= list(data.columns[1:11])
features_se= list(data.columns[11:20])
features_worst=list(data.columns[21:31])
print(features_mean)
print("-----------------------------------")
print(features_se)
print("------------------------------------")
print(features_worst)
data['diagnosis']=data['diagnosis'].map({'M':1,'B':0})
data.describe()
corr = data[features_mean].corr()
plt.figure(figsize=(14,14))
sns.heatmap(corr, cbar = True, square = True, annot=True, fmt= '.2f',annot_kws={'size': 15},
xticklabels= features_mean, yticklabels= features_mean,
cmap= 'coolwarm')


六个信息依据医疗乳腺癌数据构建数据库-文库
全部评论 (0)
还没有任何评论哟~
