《深入浅出Pytorch》第八章学习笔记
了解PyTorch生态在图像领域的发展。
一、torchvision
1. 简介
torchvision包含了在计算机视觉中常常用到的数据集,模型和图像处理的方式,而具体的torchvision则包括了下面这几部分:
- torchvision.datasets *
- torchvision.models *
- torchvision.tramsforms *
- torchvision.io
- torchvision.ops
- torchvision.utils
2. transforms
我们知道在计算机视觉中处理的数据集有很大一部分是图片类型的,如果获取的数据是格式或者大小不一的图片,则需要进行归一化和大小缩放等操作,这些是常用的数据预处理方法。除此之外,当图片数据有限时,我们还需要通过对现有图片数据进行各种变换,如缩小或放大、水平或垂直翻转等,这些是常见的数据增强方法。而torchvision.transforms中就包含了许多这样的操作。
from torchvision import transforms
data_transform = transforms.Compose([
transforms.ToPILImage(), # 这一步取决于后续的数据读取方式,如果使用内置数据集则不需要
transforms.Resize(image_size),
transforms.ToTensor()
])
AI写代码
在torchvision.io提供了视频、图片和文件的 IO 操作的功能,它们包括读取、写入、编解码处理操作。随着torchvision的发展,io也增加了更多底层的高效率的API。在使用torchvision.io的过程中,我们需要注意以下几点:
- 不同版本之间,torchvision.io有着较大变化,因此在使用时,需要查看下我们的torchvision版本是否存在你想使用的方法。
- 除了read_video()等方法,torchvision.io为我们提供了一个细粒度的视频API-- torchvision.io.VideoReader() ,它具有更高的效率并且更加接近底层处理。在使用时,我们需要先安装ffmpeg然后从源码重新编译torchvision我们才能我们能使用这些方法。
- 在使用Video相关API时,我们最好提前安装好PyAV这个库。
4. torchvision.ops
torchvision.ops 为我们提供了许多计算机视觉的特定操作,包括但不仅限于NMS,RoIAlign(MASK R-CNN中应用的一种方法),RoIPool(Fast R-CNN中用到的一种方法)。在合适的时间使用可以大大降低我们的工作量,避免重复的造轮子,想看更多的函数介绍可以点击这里进行细致查看。
5. torchvision.utils
torchvision.utils 为我们提供了一些可视化的方法,可以帮助我们将若干张图片拼接在一起、可视化检测和分割的效果。具体方法可以点击这里进行查看。
总的来说,torchvision的出现帮助我们解决了常见的计算机视觉中一些重复且耗时的工作,并在数据集的获取、数据增强、模型预训练等方面大大降低了我们的工作难度,可以让我们更加快速上手一些计算机视觉任务。
