【BUUCTF】 RSA2(dp泄露)
发布时间
阅读量:
阅读量
首先需要知道dp/dq的含义:
dp=d%(p-1)
dq=d%(q-1)
2.因此关于dp的数学知识:

3.遍历X(e+1种可能),求出(p-1)得到p且能被n整除;接下来就是常规RSA的解法得到d:
for i in range(1,e):
if (dp*e-1)%i == 0:
if n%(((dp*e-1)/i)+1)==0:
p=((dp*e-1)/i)+1
q=n/(((dp*e-1)/i)+1)
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)%phi
4.exp:
import gmpy2 as gp
e = 65537
n = 248254007851526241177721526698901802985832766176221609612258877371620580060433101538328030305219918697643619814200930679612109885533801335348445023751670478437073055544724280684733298051599167660303645183146161497485358633681492129668802402065797789905550489547645118787266601929429724133167768465309665906113
dp = 905074498052346904643025132879518330691925174573054004621877253318682675055421970943552016695528560364834446303196939207056642927148093290374440210503657
c = 140423670976252696807533673586209400575664282100684119784203527124521188996403826597436883766041879067494280957410201958935737360380801845453829293997433414188838725751796261702622028587211560353362847191060306578510511380965162133472698713063592621028959167072781482562673683090590521214218071160287665180751
for i in range(1, e): # 在范围(1,e)之间进行遍历
if (dp * e - 1) % i == 0:
if n % (((dp * e - 1) // i) + 1) == 0: # 存在p,使得n能被p整除
p = ((dp * e - 1) // i) + 1
q = n // (((dp * e - 1) // i) + 1)
phi = (q - 1) * (p - 1) # 欧拉定理
d = gp.invert(e, phi) # 求模逆
m = pow(c, d, n) # 快速求幂取模运算
print(m) # 10进制明文
print('------------')
print(hex(m)[2:]) # 16进制明文
print('------------')
print(bytes.fromhex(hex(m)[2:])) # 16进制转文本
flag{wow_leaking_dp_breaks_rsa?_98924743502}
参考:https://www.freesion.com/article/26551439803/
https://www.it610.com/article/1289100237083844608.htm
全部评论 (0)
还没有任何评论哟~
