Advertisement

深度学习作业L4W4(2)Art Generation with Neural Style Transfer

阅读量:

主题:风格转换
下面只列出实验中需要编写的代码以及我认为的细节。

计算内容代价函数

复制代码
    # GRADED FUNCTION: compute_content_cost
    
    def compute_content_cost(a_C, a_G):
    """
    Computes the content cost
    
    Arguments:
    a_C -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image C 
    a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing content of the image G
    
    Returns: 
    J_content -- scalar that you compute using equation 1 above.
    """
    
    ### START CODE HERE ###
    # Retrieve dimensions from a_G (≈1 line)
    m, n_H, n_W, n_C = a_G.get_shape().as_list()
    
    # Reshape a_C and a_G (≈2 lines)
    a_C_unrolled = tf.reshape(a_C,shape=(n_H* n_W,n_C))
    a_G_unrolled = tf.reshape(a_G,shape=(n_H* n_W,n_C))
    
    # compute the cost with tensorflow (≈1 line)
    J_content = tf.reduce_sum(tf.square(a_C_unrolled-a_G_unrolled))/(4*n_H*n_W*n_C)
    ### END CODE HERE ###
    
    return J_content
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI写代码

简单范数求取

gram矩阵

复制代码
    # GRADED FUNCTION: gram_matrix
    
    def gram_matrix(A):
    """
    Argument:
    A -- matrix of shape (n_C, n_H*n_W)
    
    Returns:
    GA -- Gram matrix of A, of shape (n_C, n_C)
    """
    
    ### START CODE HERE ### (≈1 line)
    GA = tf.matmul(A, tf.transpose(A))
    ### END CODE HERE ###
    
    return GA
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI写代码

获得gram矩阵代表各个信道的相关性

风格代价函数

复制代码
    # GRADED FUNCTION: compute_layer_style_cost
    
    def compute_layer_style_cost(a_S, a_G):
    """
    Arguments:
    a_S -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image S 
    a_G -- tensor of dimension (1, n_H, n_W, n_C), hidden layer activations representing style of the image G
    
    Returns: 
    J_style_layer -- tensor representing a scalar value, style cost defined above by equation (2)
    """
    
    ### START CODE HERE ###
    # Retrieve dimensions from a_G (≈1 line)
    m, n_H, n_W, n_C = a_G.get_shape().as_list()
    
    # Reshape the images to have them of shape (n_H*n_W, n_C) (≈2 lines)
    a_S = tf.reshape(a_S, shape=(n_H * n_W, n_C))
    a_G = tf.reshape(a_G, shape=(n_H * n_W, n_C))
    
    # Computing gram_matrices for both images S and G (≈2 lines)
    GS =  gram_matrix(tf.transpose(a_S))
    GG = gram_matrix(tf.transpose(a_G))
    
    # Computing the loss (≈1 line)
    J_style_layer = tf.reduce_sum(tf.square(GS-GG))/(4*n_H*n_W*n_C*n_H*n_W*n_C)
    
    ### END CODE HERE ###
    
    return J_style_layer
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI写代码

获得每一层的Gram矩阵差距范数

复制代码
    def compute_style_cost(model, STYLE_LAYERS):
    """
    Computes the overall style cost from several chosen layers
    
    Arguments:
    model -- our tensorflow model
    STYLE_LAYERS -- A python list containing:
                        - the names of the layers we would like to extract style from
                        - a coefficient for each of them
    
    Returns: 
    J_style -- tensor representing a scalar value, style cost defined above by equation (2)
    """
    
    # initialize the overall style cost
    J_style = 0
    
    for layer_name, coeff in STYLE_LAYERS:
    
        # Select the output tensor of the currently selected layer
        out = model[layer_name]
    
        # Set a_S to be the hidden layer activation from the layer we have selected, by running the session on out
        a_S = sess.run(out)
    
        # Set a_G to be the hidden layer activation from same layer. Here, a_G references model[layer_name] 
        # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that
        # when we run the session, this will be the activations drawn from the appropriate layer, with G as input.
        a_G = out
        
        # Compute style_cost for the current layer
        J_style_layer = compute_layer_style_cost(a_S, a_G)
    
        # Add coeff * J_style_layer of this layer to overall style cost
        J_style += coeff * J_style_layer
    
    return J_style
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI写代码

通过给定的各层权重获得整体风格代价函数

整体代价函数

复制代码
    def total_cost(J_content, J_style, alpha = 10, beta = 40):
    """
    Computes the total cost function
    
    Arguments:
    J_content -- content cost coded above
    J_style -- style cost coded above
    alpha -- hyperparameter weighting the importance of the content cost
    beta -- hyperparameter weighting the importance of the style cost
    
    Returns:
    J -- total cost as defined by the formula above.
    """
    
    ### START CODE HERE ### (≈1 line)
    J = alpha*J_content+beta*J_style
    ### END CODE HERE ###
    
    return J
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI写代码

线性组合

训练模块组合(省略了题干提供的代码)

复制代码
    def model_nn(sess, input_image, num_iterations = 200):
    
    # Initialize global variables (you need to run the session on the initializer)
    ### START CODE HERE ### (1 line)
    sess.run(tf.global_variables_initializer())
    ### END CODE HERE ###
    
    # Run the noisy input image (initial generated image) through the model. Use assign().
    ### START CODE HERE ### (1 line)
    generated_image = sess.run(model['input'].assign(input_image))
    ### END CODE HERE ###
    
    for i in range(num_iterations):
    
        # Run the session on the train_step to minimize the total cost
        ### START CODE HERE ### (1 line)
        sess.run(train_step)
        ### END CODE HERE ###
        
        # Compute the generated image by running the session on the current model['input']
        ### START CODE HERE ### (1 line)
        generated_image = sess.run(model['input'])
        ### END CODE HERE ###
    
        # Print every 20 iteration.
        if i%20 == 0:
            Jt, Jc, Js = sess.run([J, J_content, J_style])
            print("Iteration " + str(i) + " :")
            print("total cost = " + str(Jt))
            print("content cost = " + str(Jc))
            print("style cost = " + str(Js))
            
            # save current generated image in the "/output" directory
            save_image("output/" + str(i) + ".png", generated_image)
    
    # save last generated image
    save_image('output/generated_image.jpg', generated_image)
    
    return generated_image
    
    
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
    
    AI写代码

遵循tensorflow的标准做法,在训练流程中通常会采用以下步骤:首先启动全局变量的初始化过程;随后进行模型参数的更新迭代

全部评论 (0)

还没有任何评论哟~