365天深度学习训练营-第P8周:YOLOv5-C3模块实现
发布时间
阅读量:
阅读量
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
我的环境:
- 开发语言:Python 版本号为 3.11.x
- 开发工具:PyCharm 社区版版本号为 2022 年第 3 季度
- 深度学习框架版本信息:PyTorch 版本号为 2.x;OpenCV torch vision 版本号为 0.x.x.x
本次目标**:**
- 了解C3模块
该模块在YOLOv5网络中扮演着关键角色,并主要功能在于提升网络深度并增强特征提取能力。
具体来说,在YOLOv5-C3模块中包含三个Conv层(分别是Conv1、 Conv2 和 Conv3)以及一个瓶颈层构成的整体架构上,则能够被系统地划分为四个主要组成部分。
- Conv1:第一层卷积模块对该输入特征图执行一次卷积操作。该过程可采用任意尺寸的卷积核但根据设计建议使用1×1尺寸以实现降维或升维功能这对于特征提取至关重要。
- Bottleneck:作为第二个核心模块该设计包含两个关键组件:首先经过一个(1×1)卷积层将特征图通道数减半;随后通过一个(3×3)卷积层将通道数增加一倍。这种结构既能显著提升网络的感受野又能有效降低计算开销。
- Conv2 和 Conv3:其作用与第一层类似具体而言其中 Conv2 使用步长为 1 的卷积层进行操作而 Conv3 则采用步长为 2 的设计以进一步扩大感受野从而优化特征提取效果。
在每一对Conv模块之间增加了BN层并搭配了LeakyReLU激活函数,并为了增强模型的稳定性和泛化能力。
该模块主要承担多尺度特征融合技术和跨通道信息传递机制所承担的核心功能,在此基础之上显著提升了特征图的表达能力,并进一步优化了YOLOv5模型的整体性能与识别精度
一、前期准备
将数据集导入。
import torch
import torch.nn as nn
from torchvision import transforms,datasets
from torchvision.models import vgg16
import PIL,pathlib
from torchinfo import summary
import matplotlib.pyplot as plt
data_path='F:\ weather\ weather_photos'
data_path=pathlib.Path(data_path)
data_paths = list(data_path.glob('*'))
classNames = [str(path).split('\ ')[2] for path in data_paths]
print(classNames)
处理数据并划分数据集。
train_transforms = transforms.Compose([
transforms.Resize([224,224]),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485,0.456,0.406],
std=[0.229,0.224,0.225]
)
])
total_data =datasets.ImageFolder(data_path, transform=train_transforms)
print(total_data)
print(total_data.class_to_idx)
train_size = int(0.8*len(total_data))
test_size = len(total_data)-train_size
train_dataset,test_dataset=torch.utils.data.random_split(total_data,[train_size,test_size])
print(train_dataset,test_dataset)
print(train_size,test_size)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size)
二、构建C3模块
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
def forward(self, x):
return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c_, c2, 3, 1, g=g)
self.add = shortcut and c1 == c2
def forward(self, x):
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
def forward(self, x):
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class model_K(nn.Module):
def __init__(self):
super(model_K, self).__init__()
self.Conv = Conv(3, 32, 3, 2)
self.C3_1 = C3(32, 64, 3, 2)
self.classifier = nn.Sequential(
nn.Linear(in_features=802816, out_features=100),
nn.ReLU(),
nn.Linear(in_features=100, out_features=4)
)
def forward(self, x):
x = self.Conv(x)
x = self.C3_1(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
model = model_K().to("cpu")
summary(model)

构建C3组成的模块,并将其整合。
三、训练模型
**** 设置超参数。
loss_fn = nn.CrossEntropyLoss()
learn_rate = 1e-3
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
编写训练函数和测试函数。
def train(dataloader,model,loss_fn,optimizer):
size = len(dataloader.dataset)
num_batchs = len(dataloader)
train_loss, train_acc = 0, 0
for X,y in dataloader:
pred=model(X)
loss=loss_fn(pred,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
train_loss+=loss.item()
train_acc /= size
train_loss /= num_batchs
return train_acc,train_loss
def test(dataloader,model,loss_fn):
size=len(dataloader.dataset)
num_batchs=len(dataloader)
test_loss,test_acc=0,0
with torch.no_grad():
for imgs,target in dataloader:
target_pred = model(imgs)
loss=loss_fn(target_pred,target)
test_loss+=loss.item()
test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batchs
return test_acc,test_loss
正式训练。
epochs=20
train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]
for epoch in range(epochs):
model.train()
epoch_train_acc,epoch_train_loss= train(train_dl,model,loss_fn,opt)
model.eval()
epoch_test_acc,epoch_test_loss=test(test_dl,model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1,epoch_train_acc,epoch_train_loss,epoch_test_acc,epoch_test_loss))
print('Done')

四、结果可视化
epochs_range = range(epochs)
plt.figure(figsize=(12,3))
plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label='Training Accuracy')
plt.plot(epochs_range,test_acc,label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label='Training Loss')
plt.plot(epochs_range,test_loss,label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

五、指定图片进行预测
classes = list(total_data.class_to_idx)
def predict_one_img(image_path, model, transform, classes):
test_img = PIL.Image.open(image_path).convert('RGB')
test_img=transform(test_img)
img = test_img.to('cpu').unsqueeze(0)
model.eval()
output = model(img)
x,pred = torch.max(output,1)
pred_class=classes[pred]
print(f'预测结果是{pred_class}')
predict_one_img(image_path='F:\ weather_photos\ cloudy\ cloudy1.jpg',model=model,transform=train_transforms,classes=classes)
保存模型参数
PATH = './model.pth'
torch.save(model.state_dict(),PATH)
model.load_state_dict(torch.load(PATH))
全部评论 (0)
还没有任何评论哟~
