人工智能——人工神经网络
什么是神经网络?
神经网络是一种机器学习程序或模型,它以类似于人脑的方式做出决策,通过使用模仿生物神经元协同工作方式的过程来识别现象、权衡利弊并得出结论。
每个神经网络都由多个节点层或人工神经元组成 – 一个输入层、一个或多个隐藏层和一个输出层。每个节点都与其他节点相连,具有一个关联的权重和阈值。如果任何单个节点的输出高于指定的阈值,那么该节点将被激活,并将数据发送到网络的下一层。否则,不会将数据传递到网络的下一层。
神经网络依靠训练数据来学习并随着时间的推移提高其准确性。一旦对其准确性进行微调,它们就会成为计算机科学和人工智能领域的强大工具,使我们能够高速对数据进行分类和聚类。与人类专家的人工识别相比,人工智能进行语音识别或图像识别只需几分钟,而人工识别则需要几小时。神经网络最著名的例子之一就是 Google 的搜索算法。
神经网络有时被称为人工神经网络 (ANN) 或模拟神经网络 (SNN)。它们是机器学习的一个子集,是深度学习模型的核心。
什么是神经网络?
神经网络是一种机器学习程序或模型,它以类似于人脑的方式做出决策,通过使用模仿生物神经元协同工作方式的过程来识别现象、权衡利弊并得出结论。
每个神经网络都由多个节点层或人工神经元组成 – 一个输入层、一个或多个隐藏层和一个输出层。每个节点都与其他节点相连,具有一个关联的权重和阈值。如果任何单个节点的输出高于指定的阈值,那么该节点将被激活,并将数据发送到网络的下一层。否则,不会将数据传递到网络的下一层。
神经网络依靠训练数据来学习并随着时间的推移提高其准确性。一旦对其准确性进行微调,它们就会成为计算机科学和人工智能领域的强大工具,使我们能够高速对数据进行分类和聚类。与人类专家的人工识别相比,人工智能进行语音识别或图像识别只需几分钟,而人工识别则需要几小时。神经网络最著名的例子之一就是 Google 的搜索算法。
神经网络有时被称为人工神经网络 (ANN) 或模拟神经网络 (SNN)。它们是机器学习的一个子集,是深度学习模型的核心。
电子书通过 AI 治理构建负责任的 AI 工作流程
了解构建块和最佳实践以帮助您的团队加速开发负责任的 AI。
相关内容
新一代企业级 AI 开发平台 watsonx.ai
立即注册,获取有关生成式 AI 的电子书
神经网络如何工作?
将每个单独的节点视为其自己的线性回归模型,由输入数据、权重、偏置(或阈值)和输出组成。公式如下所示:
∑wixi + 偏置 = w1x1 + w2x2 + w3x3 + bias
如果 Σw1x1 + b>= 0,则输出 = f(x) = 1;如果 Σw1x1 + b < 0,则输出为 0
一旦确定了输入层,就会分配权重。这些权重有助于确定任何给定变量的重要性,与其他输入相比,较大的权重对输出的贡献更大。然后将所有输入乘以各自的权重,再求和。之后,输出通过激活函数传递,该函数决定着输出。如果该输出值超过给定阈值,将“触发”(或激活)节点,并将数据传递到网络中的下一层。结果是一个节点的输出成为下一个节点的输入。这种将数据从一层传递到下一层的过程将该神经网络定义为前馈网络。
让我们用二进制数值来分析一下单个节点可能是什么样子。我们可以把这个概念应用到一个更具体的例子中,比如你是否应该去冲浪(是:1,否:0)。去还是不去的决定是我们的预期结果,或者 y-hat。假设有三个因素影响着你的决策:
- 海浪状况好吗?(是:1,否:0)
- 排队人多吗?(是:1,否:0)
- 最近发生过鲨鱼袭击事件吗?(是:0,否:1)
那么,我们假设以下情况,给出以下输入:
- X1 = 1,因为海浪状况良好
- X2 = 0,因为人群已散去
- X3 = 1,因为最近没有发生鲨鱼袭击事件
现在,我们需要分配一些权重来确定各项的重要性。权重越大表示特定变量对决策或结果越重要。
- W1 = 5,因为不经常出现大浪
- W2 = 2,因为你已经习惯了有很多人
- W3 = 4,因为你害怕鲨鱼
最后,我们还将假设阈值为 3,这将转换为偏置值 –3。有了各项输入后,我们可以开始将值代入公式以获得所需的输出。
Y-hat = (15) + (02) + (1*4) – 3 = 6
如果我们使用本节开头的激活函数,就可以确定该节点的输出为 1,因为 6 大于 0。在这种情况下,你会去冲浪;但如果我们调整权重或阈值,就可以从模型中获得不同的结果。当我们观察一个决策时,就像上面的例子一样,我们可以看到神经网络如何根据先前决策或层的输出做出越来越复杂的决策。
在上面的例子中,我们使用感知器来说明其中的一些数学原理,但神经网络利用了 sigmoid 神经元,它们的特点是值在 0 到 1 之间。由于神经网络的行为类似于决策树,数据从一个节点级联到另一个节点,使得 x 值在 0 到 1 之间可减少单个变量的任何给定变化对任何给定节点的输出的影响,从而减少对神经网络输出的影响。
当我们开始考虑神经网络的更多实际用例时,例如图像识别或分类,我们将利用监督学习或标记数据集来训练算法。当我们训练模型时,我们需要使用成本(或损失)函数来评估其准确性。这通常也称为均方误差 (MSE)。在下面的等式中,
- i 代表样本索引、
- y-hat 是预测结果,
- y 是实际值,
- m 是样本数。
= =1/2 ∑129_(=1)^▒( ̂^(() )−^(() ) )^2
最终,我们的目标是使成本函数最小化,以确保任何给定观测数据的拟合正确性。随着模型调整其权重和偏置,它使用成本函数和强化学习来达到收敛点或局部最小值。算法调整权重的过程是通过梯度下降,允许模型确定减少误差(或最小化成本函数)的方向。对于每个训练示例,模型的参数都会进行调整,以逐渐收敛到最小值。
请参阅这篇 IBM Developer 文章,深入了解神经网络中涉及的定量概念。
大多数深度神经网络都是前馈网络,这意味着它们仅沿一个方向从输入流向输出。但是,你也可以通过反向传播来训练模型,也就是说,从输出到输入反方向移动。通过反向传播,我们可以计算并确定与每个神经元相关的误差,从而对模型参数进行适当的调整和拟合。
