计组笔记第一章个人整理未完善
计算机组成原理 笔记整理
第一章
1.1
The Three–Y’s(三个原则)
•Hierarchy(层次化)
•Modularity(模块化)
•Regularity(规整化)
Weighted positional number system(带权的位置数制)
‒Base(基数)
‒weighted(权)
binary numbers:
 base:2
 weighted:2^i
bits(1),bytes(8),nibbles(4)
•2^10=1 Kilo≈1000(1024≈10^3)
•2^20=1 Mega≈1 million(1,048,576≈10^6)
•2^30=1 Giga≈1 billion(1,073,741,824≈10^9)
1.2
Data types representing information in a computer
Unsigned numbers(无符号数)
•Unsigned number:are created directly as ordinary binary codes
 –Operation codes in the OP code field
 –Register numbers in address field
 –Memory address
 –counter
 –Time,clock frequency
Signed numbers(有符号数)
•Fix-Point Number(小数点不占位)
•Floating-Point Number(小数点占位)
MSB: the Most Significant (left-most) Bit
Sign-Magnitude Numbers(原码)
•1 sign bit,N-1 magnitude bits
•Sign bit is the Most Significant (left-most) Bit
 –Positive number: sign bit=0
 –Negative number: sign bit=1
•Example,4-bit sign/mag representations of ±6:
 +6=0110;
 -6=1110;
 [+0]=0.0000000;
 [-0]=1.0000000;
•Range of an N-bit sign/magnitude number:
 [-(2(N-1)-1),2(N-1)-1]
Two’s Complement Numbers(补码)
–Addition works(易于加法操作)
–Single representation for 0(0的表示是唯一的)
•正数补码:和原码一样,符号用0表示,数值用二进制表示;
•负数补码:符号用1表示,原码数值部分按位取反,末位加1;
•The Most Significant Bit still indicates the sign
 •1=negative,0=positive;
•Range of an N-bit two’s comp number:
 [-(2N-1),2N-1-1]
One’s Complement Numbers(反码)
The sign bit '0' is assigned as the magnitude indicator in the remaining n-1 bits.
Assign a negative sign to the '1' at the most significant bit (msb) of the one's complement of the magnitude in the remaining n-1 bits.
•Decimal:
 –X1=+0.1011011,[X1]1’s compl=0.1011011
 –X2=-0.1011011,[X2]1’s compl=1.0100100
•Integer:
 –X3=+1011011,[X3]1’s compl=01011011
 –X4=-1011011,[X4]1’s compl=10100100
•[+0]1’s compl=00000000;
 [-0]1’s compl=11111111
Number System Range
Unsigned [0,2^N-1]
Sign/Magnitude [-(2(N-1)-1),2(N-1)-1]
One’s Complement [-(2(N-1)-1),2(N-1)-1]
Two’s Complement [-2(N-1),2(N-1)-1]
Overflow(溢出)
•Digital systems operate on a fixed number of bits
•Overflow: when result is too big to fit in the available number of bits
•See previous example of 11+6
Overflow Examples
Increasing Bit Width(扩展位数)
Extend number from N to M bits(M>N)
Zero-extension(零扩展)
 •Zeros copied to msb’s
 •Value changes for negative number
Sign-extension(符号扩展)
 •Sign bit copied to msb’s
 •Number value is same
