Advertisement

EE5811-Computer vision-Filter and resample

阅读量:

Information about image

1:common to use one byte per value(0-255)(black-white)

2:a grayscale image as a function(f:from R^2 to R)

请添加图片描述
For the function,we can apply other operations to the image:

g(x,y)=f(x,y)+20
g(x,y)=f(-x,y) ->Turn with the y axle

3:Characterizing image transformations

doesn't mean transformation is applied at each pixel separately
Attributes/properties of functional transformation
  • Additivity : T(F1+F2)=T(F1)+T(F2)
  • Scaling : T(lambdaF)=lambdaT(F)
  • Direct consequence :Linearity: T(alphaF1+betaF2)=alphaG1+betaG2
  • Shift Invariance :G[I-j]=T(F(I-j))

4:Impulse response(Delta function)请添加图片描述

请添加图片描述
请添加图片描述
The meaning : Impulse response to the image can be seen the filter as a transfer function(input a vacant picture with a pixel point’s value is one and other 0,then the filter doing the convolution opetarion to this picture ,final, output image is impulse response of this filter.)
At here,H is impulse response/filter/kernel

The example of formula to calculate
请添加图片描述
properties of convolution
请添加图片描述
size
请添加图片描述

(cross)Correlation

请添加图片描述
请添加图片描述

Filters

请添加图片描述
Filtering
  • Form a new image whose pixels are a combination of the original pixels
why?
  • To get useful information from images
    (extract edges or contours(to understand shape)

  • To enhance the image
    (remove noise)
    (to sharpen or to “enhance image”)

全部评论 (0)

还没有任何评论哟~