人工智能教程 - 数学基础课程1.5 - 离散数学-1 证明
证明(proof)
是一种确定事实的方法
(A proof is a method for ascertaining the truth)
物理上和平时:
- 实验和观察(Experimentation & oberservation)
- 抽样和找反例(Sampling & counterexamples)
- 裁判(judge & jury)
- Boss
- inner conviction
例如在计算机科学里很流行的一句话:“信不信由你,我的程序里没有bug!”
(It is very popular in computer science.believe it or not,with the mantra.there are no bugs in my program)
数学证明
证明是通过一系列公理的逻辑推理来验证一个命题
(A methematical proof is a verigication of a proposition by a chain of logical deductions from a set of axioms)
命题是真或假的陈述:
(A proposition is a statement that is either true or false)
Ex:\forall n \in \mathbb{N} n^2+n+41 is a prime number
\forall for all 【量词】(quantifier)
\mathbb{N} {0,1,2,3,…}【论域】(universe of discourse)
n^2+n+41 is a prime number :谓词(predicate)
谓词是一个命题,它的真值依赖于变量的值
(a predicate is a propostion whose truth depends on the value of a variable )
在实际的物理学和统计学中,你经常会通过检验前40个值
但即便前40个都正确,可能41就会是命题为假。
Ex:
Ex:\forall n \in \mathbb{Z} , n\geq z\Rightarrow n^2\geq 4
“\Rightarrow” means implies
Def: An inplication p\Rightarrow q is true if p is False or q is True
真值表(Truth Table)
| p | q | p\Rightarrowq | q\Rightarrowp | p\Leftrightarrowq |
|---|---|---|---|---|
| T | T | T | T | T |
| T | F | F | T | F |
| F | T | T | F | F |
| F | F | T | T | T |
公理
定义:是一个假定为真的命题
def: An axiom is a proposition that is assumed to be true
公理应该具备:
-
一致性(consistent)
定义:如果一组公理是一致的,那么一个命题不能同时为真,同时为假
(Def: A set of axioms is consistent if no proposition can be proved to be both true and false.) -
完整性(complete)
定义:如果一组公理是完整的,那么所有命题必须或者为真或为假。
(Def: A set of axioms is complete if it can be used to prove every proposition is .)
