Advertisement

论文阅读 ASFM-Net: Asymmetrical Siamese Feature Matching Network for Point Completion

阅读量:
在这里插入图片描述

单位:西电,慕尼黑工业大学,Inceptio
论文链接:https://dl.acm.org/doi/10.1145/3474085.3475348
代码链接:https://github.com/Yan-Xia/ASFM-Net

简介

为解决Point Completion问题,提出了一种Asymmetrical Siamese Feature Matching strategy,包含两个部分:

The Siamese auto-encoder neural network: map the partial and complete input point cloud into a shared latent space, which can capture detailed shape prior.

The iterative refinement unit: generate complete shapes with fine-grained details by integrating prior information.
图1

  • 第一和第三行分别是完整点云和残缺点云的自编码过程,其中G1和G3分别代表完整点云和残缺点云的全局特征
  • 经过特征matching后,G1和G3的空间分布变得一致(G1固定,G3去匹配G1),然后match后的G2通过refine的操作获得补全点云输出

方法

3.1 Asymmetrical Siamese Auto-encoder

在这里插入图片描述
AE1先训练,然后固定,与AE2进行feature mathcing,实验证明这样比只用AE2效果好

3.2 Refinement Unit

在这里插入图片描述
  • we concatenate the partial inputs with the 𝑃𝑐𝑜𝑎𝑟𝑠𝑒 to form a synthetic point cloud 𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 using the farthest points sampling (FPS) algorithm and mirror operations.
  • We explore various symmetry operations, including plane symmetry, projective symmetry, and affine transformation operations. Experiments confirm that the XY-plane symmetry achieves the best performance.
  • Inspired by FoldingNet [57], we utilize a 2D grid generator and concatenates these 2D grids with each point coordinate to increase the variability of each point.
  • In order to narrow the distribution difference between the partial and the complete point cloud, the refinement unit concatenates the global feature with the coordinate of each point in 𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐.
  • Due to the superiority of neural networks in residuals prediction [47], the refinement unit predicts the coordinate offset for every point between the point set 𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 and the ground truth point cloud. we pass the 𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 through a series of bottom-up and top-down structural styles of MLPs.
    在这里插入图片描述
    where 𝑅(·) denotes the function of predicting the coordinate residuals for the 𝑃𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 .

3.3 Loss Function

Feature matching loss.
在这里插入图片描述

Reconstruction loss.
在这里插入图片描述

Overall loss.
在这里插入图片描述

实验

PCN数据集4096个点对比
在这里插入图片描述

Completion3D数据集2048个点
在这里插入图片描述

KTTI数据集
在这里插入图片描述

讨论

5.1 Ablation Study

在这里插入图片描述

Asymmetrical Siamese autoencoder: We use the pre-trained asymmetrical Siamese autoencoder instead of the encoder modules of PCN and TopNet but keep their decoder modules respectively, referred as SA-PCN Decoder and SA-TopNet Decoder.

Refine unit: We choose the TopNet [45] and PCN [60] as the baseline. The refinement unit is first just integrated into TopNet and PCN, referred as TopNet-Refine and PCN-Refine.

5.2 Robustness Test

在这里插入图片描述在这里插入图片描述

5.3 Completion on novel categories

在这里插入图片描述
在这里插入图片描述

全部评论 (0)

还没有任何评论哟~